Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 27
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
Heliyon ; 9(7): e18171, 2023 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-37519722

RESUMEN

Surface water pollution caused by the discharge of effluents from industrial estates has become a major concern for Dhaka (Bangladesh). This study aims to have a concise look at the severe river water pollution, mainly from effluents discharged from the tannery village. Effluent samples were collected from five ejected points, including the central effluent treatment plant (CETP), twenty adjacent river water, and two pond water nearby Hemayetpur, Savar. Thirty-one parameters have been observed at these sampling points for three seasons, from April 2021 to January 2022. The results obtained from water quality indices, i.e., water quality index (WQI), entropy water quality index (EWQI), and irrigation water quality index (IWQI), show that most studied surface water samples ranked "unsuitable" for consumption, irrigation, and anthropogenic purposes. The highest health risk was observed downstream of Hemayetpur city at the Savar CETP discharge site, indicating higher levels of heavy metal in the river water following the tannery village. Carcinogenic and non-carcinogenic human health risks could be triggered mainly by water consumption as concentrations of arsenic (As), chromium (Cr), nickel (Ni), and lead (Pb) exceeded the upper benchmark of 1 × 10-4 for adults and children. The results of the carcinogenic risk assessment revealed that children were more vulnerable to health hazards, and quick corrective action is required to control the increased levels of heavy metals at all sample locations. Therefore, through bioaccumulation, human health and the environment are affected in these areas. Using river water for consumption, household work, or even irrigation purposes is not advisable. This study's result highlighted that properly implementing compatible policies and programs is required to improve effluent treatment methods and provide biodegradability to the Dhaleshwari River.

2.
Chemosphere ; 332: 138806, 2023 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-37137398

RESUMEN

Water pollution is a worldwide concern that has growing severe in developed and developing nations. Increasing groundwater pollution threatening both the physical and environmental health of billions of people as well as economic progress. Consequently, hydrogeochemistry, water quality and potential health risk assessment is crucial for water resource management. The study area comprises Jamuna Floodplain (Holocene deposit) area in the west and the Madhupur tract (Pleistocene deposit) area in the eastern part. Total 39 groundwater samples were collected from the study area and were analyzed for physicochemical parameters, hydrogeochemical, trace metals, and isotopic composition. The water types are mainly Ca-HCO3- to Na-HCO3- types. The isotopic compositions (δ18O‰ and δ2H‰) analysis traces the recent recharge in Floodplain area from rainwater and no recent recharge in Madhupur tract. The concentration of NO3-, As, Cr, Ni, Pb, Fe, and Mn in shallow and intermediate aquifer at the Floodplain area exceed the WHO-2011 permissible limit and is lower at deep Holocene and Madhupur tract aquifer. The integrated weighted water quality index (IWQI) exposed groundwater from shallow and intermediate aquifer are unsuitable for drinking and deep Holocene aquifer and Madhupur tract are suitable for drinking purposes. PCA analysis confirmed that anthropogenic activity is dominant in shallow and intermediate aquifers. The non-carcinogenic and carcinogenic risk for adults and children is due to oral and dermal exposure. The non-carcinogenic risk evaluation revealed that the mean hazard index (HI) values range from 0.009742 to 16.37 for adults and 0.0124-20.83 for children, respectively, and most groundwater samples from shallow and intermediate aquifers exceed the permissible limit (HI>1). The carcinogenic risk ranges from 2.71 × 10-6-0.014 for adults and 3.44 × 10-6-0.017 for children via oral consumption and 7.09 × 10-11-1.18 × 10-6 for adults and 1.25 × 10-10-2.09 × 10-6 for children via dermal exposure. Spatial distribution shows the presence of trace metal and associated health risk is high in shallow and intermediate aquifer (Holocene) than in the deep (Holocene) Madhupur tract (Pleistocene). The study implies that effective water management will ensure safe drinking water for the future generation of people.


Asunto(s)
Agua Subterránea , Oligoelementos , Contaminantes Químicos del Agua , Adulto , Niño , Humanos , Monitoreo del Ambiente , Bangladesh , Contaminantes Químicos del Agua/análisis , Agua Subterránea/química , Calidad del Agua , Oligoelementos/análisis
3.
ACS Biomater Sci Eng ; 9(5): 2170-2180, 2023 05 08.
Artículo en Inglés | MEDLINE | ID: mdl-36149264

RESUMEN

Obesity is a complex disorder associated with immense health consequences including high risk of cardiovascular diseases, diabetes, and cancer. Abnormality in the thyroid gland, genetics, less physical activity, uptake of excessive diet, and leptin resistance are critical factors in the development of obesity. To determine the treatment strategy, understanding the pathophysiology of obesity is crucial. For instances, leptin resistance mediated obesity defined by the presence of excessive leptin hormone (Lep) in the systemic circulation is very common in diet induced obesity. Therefore, our hypothesis is that quantitative measurement of Lep from blood can help to identify individuals with Lep resistant mediated obesity and thereby guide toward a proper treatment strategy. In this work, we aim to utilize an electrochemical immunosensing platform for diagnosis of obesity by measuring the Lep content in systemic circulation. A porous carbon confined FeNi bimetallic system was synthesized with three different ratios of Fe and Ni ions using high temperature pyrolysis technique. The suitability of the sensor for detecting Lep was studied using both CV and EIS techniques. The limit of detection (LOD) for GCE was recorded as 157.4 fg/mL with a wide linear concentration range of 500 fg/mL to 80 ng/mL, while for SPCE the LOD was 184.9 fg/mL with a linear range of 500 fg/mL to 50 ng/mL. Finally, the feasibility and applicability of the sensor for Lep detection was tested with serum collected from high fat diet induced obese rats. The selectivity, sensitivity, storage, and experimental stability and reproducibility tests showed potential for this biosensor platform as a point-of-care Lep detection device.


Asunto(s)
Leptina , Obesidad , Ratas , Animales , Reproducibilidad de los Resultados , Obesidad/diagnóstico , Obesidad/terapia
4.
Environ Res ; 217: 114729, 2023 01 15.
Artículo en Inglés | MEDLINE | ID: mdl-36343718

RESUMEN

The interaction between water vapor and natural/anthropogenic airborne particles deposits a massive amount of trace elements in the ecosystem. As the principal source region of the Indian monsoon originated from the Bay of Bengal, atmospheric trace elements in Bangladesh have impacted atmospheric wet deposition along the pathway, even reaching the headwaters in the Asian water tower. However, no study reports the atmospheric wet deposition of trace elements at the spatiotemporal scale. Thus, this study investigated the concentration, sources, and deposition of eighteen trace elements (Al, V, Cr, Mn, Fe, Co, Ni, Cu, Zn, As, Rb, Sr, Mo, Cd, Sn, Sb, Ba, and Pb) from 232 precipitation samples at four sites in Bangladesh. Results showed that the VWM concentrations of the eighteen measured trace elements ranged from 0.03 to 535.6 µg L-1. Zn, Fe, and Al were the principal elements of the atmosphere at four sites with mean values of 207.9 ± 227.8, 18.2 ± 9.3, and 16.3 ± 6.8 µg L-1, respectively. Besides, the eighteen trace elements showed significant variation in spatial scale with distinct seasonality. Enrichment factors of Zn, Sb, and Cd indicated serious anthropogenic influences. The major sources of trace elements were fossil fuel combustion, brick kilns, crustal dust, fugitive Pb, metal smelters, and battery recycling. Both the concentration and precipitation amount played a pivotal role in the deposition. Most of the air masses during the monsoon season came from marine sources passing over southern India and Sri Lanka. Meanwhile, the air masses during the non-monsoon season were from West Asia and the northwestern Indian subcontinent. The air masses are transported over a long range and deposit massive amounts of particulate matter in the Third Pole Himalayan region. This first-hand work on spatiotemporal variation provides a reference dataset for future targeting of the scientific community and policymakers for the development of strategies and action plans.


Asunto(s)
Contaminantes Atmosféricos , Oligoelementos , Oligoelementos/análisis , Contaminantes Atmosféricos/análisis , Bangladesh , Ecosistema , Cadmio , Plomo , Monitoreo del Ambiente/métodos
5.
Heliyon ; 8(8): e10009, 2022 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-35928102

RESUMEN

This investigation concentrates on the possibility of using gamma radiation for the decomposition of organic pollutants in textile wastewater and reuse as irrigation water. The wastewater sample was irradiated at four different absorbed doses of 3, 5, 8, and 10 kilo Gray (kGy). After irradiation at 8-10 kGy, physicochemical parameters, i.e., pH, turbidity, EC, total suspended solids (TSS) and total dissolved solids (TDS), have decreased sharply and approached to the expected value recommended by Department of Environment (DoE), Bangladesh. At 10 kGy absorbed dose, 59.0 % biological oxygen demand (BOD5) and 71.6 % chemical oxygen demand (COD) removal has been achieved, accelerating the enhancement in biodegradability index (BOD5/COD). Ammonium and total nitrogen have improved up to 87.0 % and 94.5 % after irradiation at 10 kGy doses. Subsequently, the treated textile wastewater samples were reused to grow Capsicum frutescens plants to inspect the fertility responses. When Capsicum plants were nourished by textile wastewater irradiated at 8-10 kGy, increased values were observed in the plant morphological parameters such as dry masses of the fruits (from 2.25 to 3.02 g), moisture content (from 91.35 to 92.62%), root length (from 13.21 to 16.56 cm), average plant height (from 2.42 to 4.07 cm/week), average number of leaves (from 14 to 16 nos./week), and total number of fruits (from 25 to 40 nos.) in comparison to those plants nourished by simply water and raw wastewater. The elemental analysis confirmed that negligible amounts of heavy metals were found in Capsicum fruits at higher absorbed doses. In contrast, helpful macro and micronutrients for plant production were raised to sufficient levels at 8-10 kGy, which can be the optimum doses for gamma irradiation to treat textile wastewater for maintaining sustainable water resources.

6.
Int J Biol Macromol ; 207: 826-840, 2022 May 15.
Artículo en Inglés | MEDLINE | ID: mdl-35358575

RESUMEN

Mesoporous (~7-8 nm) biopolymer hydrogel beads (HNTs-FeNPs@Alg/ß-CD) were synthesised via ionic polymerisation route to separate heavy metal ions. The adsorption capacity of HNTs-FeNPs@Alg/ß-CD was higher than that of raw halloysite nano tubes (HNTs), iron nanoparticles (FeNPs), and bare alginate beads. FeNPs induce the magnetic properties of adsorbent and metal-based functional groups in and around the hydrogel beads. The mesoporous surface of the adsorbent permits access of heavy metal ions onto the polymer beads to interact with internal active sites and the mesoporous polymer network. Maximum adsorption capacities of lead (Pb), copper (Cu), cadmium (Cd), and nickel (Ni) were 21.09 mg/g, 15.54 mg/g, 2.47 mg/g, and 2.68 mg/g, respectively. HNTs-FeNPs@Alg/ß-CD was able to adsorb heavy metals efficiently (75-99%) under environment-relevant concentrations (200 µg/L) from mixed metal contaminants. The adsorption and selectivity trends of heavy metals were Pb > Cu > Cd > Ni, despite electrostatic binding strength of Cd > Cu > Pb > Ni and covalent binding strength of Pb > Ni > Cu > Cd. It demonstrated that not only chemosorption but also physisorption acts as the sorption mechanism. The reduction in surface area, porosity, and pore volume of the expended adsorbent, along with sorption study results, confirmed that pore filling and intra-particle diffusion played a considerable role in removing heavy metals.


Asunto(s)
Metales Pesados , Contaminantes Químicos del Agua , Adsorción , Alginatos/química , Cadmio , Celulosa , Ciclodextrinas , Hidrogeles , Concentración de Iones de Hidrógeno , Iones , Cinética , Plomo , Fenómenos Magnéticos , Níquel , Polímeros
7.
Chem Soc Rev ; 51(3): 812-828, 2022 Feb 07.
Artículo en Inglés | MEDLINE | ID: mdl-35022644

RESUMEN

Low dimensional electrocatalytic heterostructures have recently attracted significant attention in the catalysis community due to their highly tuneable interfaces and exciting electronic features, opening up new possibilities for effective nanometric control of both the charge carriers and energetic states of several intermediate catalytic species. In-depth understanding of electrocatalytic routes at the interface between two or more low-dimensional nanostructures has triggered the development of heterostructure nanocatalysts with extraordinary properties for water splitting reactions, NRR and CO2RR. This tutorial review provides an overview of the most recent advances in synthetic strategies for 0D-1D, 0D-2D, and 2D-2D nanoheterostructures, discussing key aspects of their electrocatalytic performances from experimental and computational perspectives as well as their applications towards the development of overall water splitting and Zn-air battery devices.

8.
ACS Appl Mater Interfaces ; 14(3): 3919-3929, 2022 Jan 26.
Artículo en Inglés | MEDLINE | ID: mdl-35014264

RESUMEN

The design of alternative earth-abundant van der Waals (vdW) nanoheterostructures for bifunctional oxygen evolution/reduction (OER/ORR) electrocatalysis is of paramount importance to fabricate energy-related devices. Herein, we report a simple metal-organic framework (MOF)-derived synthetic strategy to fabricate low-dimensional (LD) nanohybrids formed by zero-dimensional (0D) ZrO2 nanoparticles (NPs) and heteroatom-doped two-dimensional (2D) carbon nanostructures. The 2D platforms controlled the electronic structures of interfacial Zr atoms, thus producing optimized electron polarization for boron and nitrogen-doped carbon (BCN)/ZrO2 nanohybrids. X-ray photoelectron spectroscopy (XPS) and theoretical studies revealed the key role of the synergistic couple effect of boron (B) and nitrogen (N) in interfacial electronic polarization. The BCN/ZrO2 nanohybrid showed excellent bifunctional electrocatalytic activity, delivering an overpotential (η10) of 301 mV to reach a current density of 10 mA-cm-2 for the OER process and a half-wave potential (E1/2) of 0.85 V vs reversible hydrogen electrode (RHE) for the ORR process, which are comparable to the state-of-the-art LD nanohybrids. Furthermore, BCN/ZrO2 also showed competitive performances for water-splitting and zinc-air battery devices. This work establishes a new route to fabricate highly efficient multifunctional electrocatalysts by tuning the electronic polarization properties of 0D-2D electrochemical interfaces.

9.
Small ; 18(12): e2106091, 2022 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-34897990

RESUMEN

Atomic catalysts (AC) are gaining extensive research interest as the most active new frontier in heterogeneous catalysis due to their unique electronic structures and maximum atom-utilization efficiencies. Among all the atom catalysts, atomically dispersed heteronuclear dual-atom catalysts (HDACs), which are featured with asymmetric active sites, have recently opened new pathways in the field of advancing atomic catalysis. In this review, the up-to-date investigations on heteronuclear dual-atom catalysts together with the last advances on their theoretical predictions and experimental constructions are summarized. Furthermore, the current experimental synthetic strategies and accessible characterization techniques for these kinds of atomic catalysts, are also discussed. Finally, the crucial challenges in both theoretical and experimental aspects, as well as the future prospects of HDACs for energy-related applications are provided. It is believed that this review will inspire the rational design and synthesis of the new generation of highly effective HDACs.

10.
J Phys Chem B ; 125(50): 13730-13743, 2021 12 23.
Artículo en Inglés | MEDLINE | ID: mdl-34902976

RESUMEN

Excessive body fat and high cholesterol are one of the leading reasons for triggering cardiovascular risk factors, obesity, and type 2 diabetes. Beta-glucan (BG)-based dietary fibers are found to be effective for lowering fat digestion in the gastrointestinal tract. However, the fat capturing mechanism of BG in aqueous medium is still elusive. In this report, we studied the dietary effect of barley-extracted BG on docosahexaenoic acid (DHA, a model fat molecule) uptake and the impact of the aqueous medium on their interactions using computational modeling and experimental parameters. The possible microscale and macroscale molecular interactions between BG and DHA in an aqueous medium were analyzed through density functional theory (DFT), Monte-Carlo (MC), and molecular dynamics (MD) simulations. DFT analysis revealed that the BG polymer extends hydrogen bonding and nonbonding interactions with DHA. Bulk simulation with multiple DHA molecules on a long-chain BG showed that a viscous colloidal system is formed upon increasing DHA loading. Experimental size and zeta potential measurements also confirmed the electrostatic interaction between BG-DHA systems. Furthermore, simulated and experimental diffusion and viscosity measurements showed excellent agreement. These simulated and experimental results revealed the mechanistic pathway of how BG fibers form colloidal systems with fat molecules, which is probably responsible for BG-induced delayed fat digestion and further halting of fatty molecule absorption in the GI tract.


Asunto(s)
Diabetes Mellitus Tipo 2 , beta-Glucanos , Tejido Adiposo , Humanos , Enlace de Hidrógeno , Agua
12.
J Am Chem Soc ; 143(16): 6037-6042, 2021 04 28.
Artículo en Inglés | MEDLINE | ID: mdl-33821637

RESUMEN

The electrocatalytic properties of some endohedral fullerenes for hydrogen evolution reactions (HER) were recently predicted by DFT calculations. Nonetheless, the experimental catalytic performance under realistic electrochemical environments of these 0D-nanomaterials have not been explored. Here, for the first time, we disclose the HER electrocatalytic behavior of seven M3N@2n (2n = 68, 78, and 80) fullerenes (Gd3N@Ih(7)-C80, Y3N@Ih(7)-C80, Lu3N@Ih(7)-C80, Sc3N@Ih(7)-C80, Sc3N@D5h(6)-C80, Sc3N@D3h(5)-C78, and Sc3N@D3(6140)-C68) using a combination of experimental and theoretical techniques. The non-IPR Sc3N@D3(6140)-C68 compound exhibited the best catalytic performance toward the generation of molecular hydrogen, exhibiting an onset potential of -38 mV vs RHE, a very high mass activity of 1.75 A·mg-1 at -0.4 V vs RHE, and an excellent electrochemical stability, retaining 96% of the initial current after 24 h. The superior performance was explained on the basis of the fused pentagon rings, which represent a new and promising HER catalytic motif.

13.
Chem Soc Rev ; 50(8): 4856-4871, 2021 Apr 26.
Artículo en Inglés | MEDLINE | ID: mdl-33704291

RESUMEN

Nature-inspired hierarchical architectures have recently drawn enormous interest in the materials science community, being considered as promising materials for the development of high-performance wearable electronic devices. Their highly dynamic interfacial interactions have opened new horizons towards the fabrication of sustainable sensing and energy storage materials with multifunctional properties. Nature-inspired assemblies can exhibit impressive properties including ultrahigh sensitivity, excellent energy density and coulombic efficiency behaviors as well as ultralong cycling stability and durability, which can be finely tuned and enhanced by controlling synergistic interfacial interactions between their individual components. This tutorial review article aims to address recent breakthroughs in the development of advanced Nature-inspired sensing and energy storage materials, with special emphasis on the influence of interfacial interactions over their improved properties.

14.
J Am Chem Soc ; 143(10): 4064-4073, 2021 Mar 17.
Artículo en Inglés | MEDLINE | ID: mdl-33661615

RESUMEN

Platinum (Pt)-based-nanomaterials are currently the most successful catalysts for the oxygen reduction reaction (ORR) in electrochemical energy conversion devices such as fuel cells and metal-air batteries. Nonetheless, Pt catalysts have serious drawbacks, including low abundance in nature, sluggish kinetics, and very high costs, which limit their practical applications. Herein, we report the first rationally designed nonprecious Co-Cu bimetallic metal-organic framework (MOF) using a low-temperature hydrothermal method that outperforms the electrocatalytic activity of Pt/C for ORR in alkaline environments. The MOF catalyst surpassed the ORR performance of Pt/C, exhibiting an onset potential of 1.06 V vs RHE, a half-wave potential of 0.95 V vs RHE, and a higher electrochemical stability (ΔE1/2 = 30 mV) after 1000 ORR cycles in 0.1 M NaOH. Additionally, it outperformed Pt/C in terms of power density and cyclability in zinc-air batteries. This outstanding behavior was attributed to the unique electronic synergy of the Co-Cu bimetallic centers in the MOF network, which was revealed by XPS and PDOS.

15.
J Am Chem Soc ; 143(2): 1203-1215, 2021 Jan 20.
Artículo en Inglés | MEDLINE | ID: mdl-33401899

RESUMEN

The development of low-dimensional (LD) supramolecular materials with multifunctional electrocatalytic properties has sparked the attention of the catalysis community. Herein, we report the synthesis of a new class of 0D-2D heterostructures composed of boron carbon nitride nanosheets (BCN NSs) and fullerene molecules (C60/F) that exhibit multifunctional electrocatalytic properties for the hydrogen evolution/oxidation reactions (HER/HOR) and the oxygen evolution/reduction reactions (OER/ORR). The electrocatalytic properties were studied with varying F:BCN weight ratios to optimize the intermolecular electron transfer (ET) from the BCN NSs to the electron-accepting C60 molecules. The nanohybrid supramolecular material with 10 wt % F in BCN NSs (10% F/BCN) exhibited the largest Raman and C 1s binding energy shifts, which were associated with greater cooperativity interactions and enhanced ET processes at the F/BCN interface. This synergistic interfacial phenomenon resulted in highly active catalytic sites that markedly boosted electrocatalytic activity of the material. The 10% F/BCN showed the highest tetrafunctional catalytic performance, outperforming the OER catalytic activity of commercial RuO2 catalysts with a η10 of 390 mV and very competitive onset potential values of -0.042 and 0.92 V vs RHE for HER and ORR, respectively, and a current density value of 1.47 mA cm-2 at 0.1 V vs RHE with an ultralow ΔGH* value of -0.03 eV toward the HOR process. Additionally, the 10% F/BCN catalyst was also used as both cathode and anode in a water splitting device, delivering a cell potential of 1.61 V to reach a current density of 10 mA cm-2.

16.
J Colloid Interface Sci ; 581(Pt B): 905-918, 2021 Jan 01.
Artículo en Inglés | MEDLINE | ID: mdl-32956910

RESUMEN

Porous carbon encapsulated non-precious metal nanocatalysts have recently opened the ways towards the development of high-performance water remediation and energy conversion technologies. Herein, we report a facile, scalable and green synthetic methodology to fabricate porous carbon encapsulated transition metal nanocatalysts (M@TP: M = Cu, Ni, Fe and Co) using commercial tissue paper. The morphology, crystalline structure, chemical composition and textural properties of the M@TP nanocatalysts were thoroughly characterized. The catalytic activity of the M@TP nanocatalysts was investigated for the degradation of Congo red (CR) via peroxymonosulfate activation. Co@TP-6 was found to be the most active catalyst allowing 97.68% degradation in 30 min with a higher rate constant of 0.109 min-1. The nanocatalysts also displayed a carbon shell thickness-dependent electrocatalytic hydrogen evolution reaction (HER) activity, most likely due to the shielding effect of the carbon layers over the electron transfer (ET) processes at the metal core/carbon interfaces. Remarkably, the Ni@TP-6 electrocatalyst, with the smaller carbon shell thickness, showed the best electrocatalytic performance. They delivered an ultralow onset potential of -30 mV vs RHE, an overpotential of 105 mV at a current density of 10 mA·cm-2 and an excellent electrochemical stability to keep the 92% of the initial current applied after 25000 s, which is comparable with the HER activity of the state-of-the-art Ni-based catalysts.

17.
Angew Chem Int Ed Engl ; 60(1): 122-141, 2021 Jan 04.
Artículo en Inglés | MEDLINE | ID: mdl-33090642

RESUMEN

An emerging class of heterostructures with unprecedented (photo)electrocatalytic behavior, involving the combination of fullerenes and low-dimensional (LD) nanohybrids, is currently expanding the field of energy materials. The unique physical and chemical properties of fullerenes have offered new opportunities to tailor both the electronic structures and the catalytic activities of the nanohybrid structures. Here, we comprehensively review the synthetic approaches to prepare fullerene-based hybrids with LD (0D, 1D, and 2D) materials in addition to their resulting structural and catalytic properties. Recent advances in the design of fullerene-based LD nanomaterials for (photo)electrocatalytic applications are emphasized. The fundamental relationship between the electronic structures and the catalytic functions of the heterostructures, including the role of the fullerenes, is addressed to provide an in-depth understanding of these emerging materials at the molecular level.

18.
J Am Chem Soc ; 142(42): 17923-17927, 2020 Oct 21.
Artículo en Inglés | MEDLINE | ID: mdl-33030340

RESUMEN

Fullerene-based low-dimensional (LD) heterostructures have emerged as excellent energy conversion materials. We constructed van der Waals 1T-MoS2/C60 0D-2D heterostructures via a one-pot synthetic approach for catalytic hydrogen generation. The interfacial 1T-MoS2-C60 and C60-C60 interactions as well as their electrocatalytic properties were finely controlled by varying the weight percentages of the fullerenes. 1T-MoS2 platforms provided a novel template for the formation of C60 nanosheets (NSs) within a very narrow fullerene concentration range. The heterostructure domains of 1T-MoS2 and C60 NSs exhibited excellent hydrogen evolution reaction (HER) performances, with one of the lowest onset potentials and ΔGH* values for LD non-precious nanomaterials reported to date.

19.
Water Sci Technol ; 82(7): 1370-1379, 2020 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-33079716

RESUMEN

While extensive work has been done on the generation of adsorbents by carbonization of large polymeric structures, few works are currently available for the use of monomeric carbon molecules as precursors during carbonization. In this work we report the formation of a carbon adsorbent material from the carbonization of glucose in the presence of zinc oxide (ZnO) nanoparticle templates. Carbonization at 1,000 °C under inert atmosphere yields a product with Brunauer-Emmett-Teller (BET) surface area of 1,228.19 m2/g and 14.77 nm average pore diameter. Adsorption capacities against methylene blue, 2-naphthol and bisphenol-A at pH 7 were found to be 539 mg/g, 737 mg/g and 563 mg/g, respectively. Our material demonstrates a strong fit with the Langmuir isotherm, and adsorption kinetics show regression values near unity for the pseudo-second order kinetic model. A flow adsorption column was implemented for the remediation of tap water containing 20 mg/L methylene blue and found to quantitatively purify 11.5 L of contaminated water.


Asunto(s)
Contaminantes Ambientales , Nanopartículas , Contaminantes Químicos del Agua , Glucosa , Agua
20.
Top Curr Chem (Cham) ; 378(6): 48, 2020 Oct 10.
Artículo en Inglés | MEDLINE | ID: mdl-33037928

RESUMEN

The thermoelectric effect encompasses three different effects, i.e. Seebeck effect, Peltier effect, and Thomson effect, which are considered as thermally activated materials that alter directions in smart materials. It is currently considered one of the most challenging green energy harvesting mechanisms among researchers. The ability to utilize waste thermal energy that is generated by different applications promotes the use of thermoelectric harvesters across a wide range of applications. This review illustrates the different attempts to fabricate efficient, robust and sustainable thermoelectric harvesters, considering the material selection, characterization, device fabrication and potential applications. Thermoelectric harvesters with a wide range of output power generated reaching the milliwatt range have been considered in this work, with a special focus on the main advantages and disadvantages in these devices. Additionally, this review presents various studies reported in the literature on the design and fabrication of thermoelectric harvesters and highlights their potential applications. In order to increase the efficiency of equipment and processes, the generation of thermoelectricity via thermoelectric materials is achieved through the harvesting of residual energy. The review discusses the main challenges in the fabrication process associated with thermoelectric harvester implementation, as well as the considerable advantages of the proposed devices. The use of thermoelectric harvesters in a wide range of applications where waste thermal energy is used and the impact of the thermoelectric harvesters is also highlighted in this review.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...