Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 27
Filtrar
Más filtros













Base de datos
Intervalo de año de publicación
1.
Chem Commun (Camb) ; 60(27): 3693-3696, 2024 Mar 28.
Artículo en Inglés | MEDLINE | ID: mdl-38477079

RESUMEN

Facet control by primary amines can bolster the optoelectronic parameters of A2BIB'IIIX6 perovskite nanocrystals (NCs) with large indirect bandgaps. The 18-C amine competitively attaches to the (222) facet of Cs2AgBiBr6 (CABB) NCs, 16-C and 14-C bind to (400) and (440), and 12-C binds to (400). The NCs with only the (400) facet decrease the bandgap and exciton binding energy by 0.26 eV and 15 meV, respectively.

2.
J Pharm Sci ; 113(1): 131-140, 2024 01.
Artículo en Inglés | MEDLINE | ID: mdl-37659717

RESUMEN

INTRODUCTION: Recombinant adeno-associated viruses(rAAVs) are an attractive tool to ensure long-term expression monoclonal antibody(mAb) in the central nervous system(CNS). It is still unclear whether systemic injection or local CNS administration of AAV9 is more beneficial for the exposure of the expressed mAb in the brain. Hence, we compared the biodistribution and transgene expression following AAV9-Trastuzumab administration through different routes. METHODS AND RESULT: In-house generated AAV9-Trastuzumab vectors were administered at 5E+11 Vgs/rat through intravenous(IV), intracerebroventricular(ICV), intra-cisterna magna(ICM) and intrastriatal(IST) routes. Vector and trastuzumab blood/plasma concentrations were assessed at different time points up to the terminal time point of 21 days. Different brain regions in addition to the spinal cord, cerebrospinal fluid(CSF) and interstitial fluid(ISF), were also analyzed at the terminal time point. Our results show that vector biodistribution and Trastuzumab expression in the brain could the ranked as follows: IST>ICM>ICV>IV. Rapid clearance of vector was observed after administration via the ICM and ICV routes. The ICV route produced similar expression levels across different brain regions, while the ICM route had better expression in the hindbrain and spinal cord region. The IST route had higher expression in the forebrain region compared to the hindbrain region. A sharp decline in trastuzumab plasma concentration was observed across all routes of administration due to anti-trastuzumab antibody response. CONCLUSION: In this study we have characterized vector biodistribution and transgene mAb expression after AAV9 vector administration through different routes in rats. IST and ICM represent the best administration routes to deliver antibody genes to the brain.


Asunto(s)
Encéfalo , Terapia Genética , Ratas , Animales , Transducción Genética , Terapia Genética/métodos , Distribución Tisular , Trastuzumab , Encéfalo/metabolismo , Vectores Genéticos
3.
Antioxidants (Basel) ; 11(9)2022 Sep 09.
Artículo en Inglés | MEDLINE | ID: mdl-36139853

RESUMEN

Parkinson's disease (PD) is the second most common neurodegenerative movement disorder characterized by a progressive loss of dopaminergic neurons in the substantia nigra pars compacta. Although a complex interplay of multiple environmental and genetic factors has been implicated, the etiology of neuronal death in PD remains unresolved. Various mechanisms of neuronal degeneration in PD have been proposed, including oxidative stress, mitochondrial dysfunction, neuroinflammation, α-synuclein proteostasis, disruption of calcium homeostasis, and other cell death pathways. While many drugs individually targeting these pathways have shown promise in preclinical PD models, this promise has not yet translated into neuroprotective therapies in human PD. This has consequently spurred efforts to identify alternative targets with multipronged therapeutic approaches. A promising therapeutic target that could modulate multiple etiological pathways involves drug-induced activation of a coordinated genetic program regulated by the transcription factor, nuclear factor E2-related factor 2 (Nrf2). Nrf2 regulates the transcription of over 250 genes, creating a multifaceted network that integrates cellular activities by expressing cytoprotective genes, promoting the resolution of inflammation, restoring redox and protein homeostasis, stimulating energy metabolism, and facilitating repair. However, FDA-approved electrophilic Nrf2 activators cause irreversible alkylation of cysteine residues in various cellular proteins resulting in side effects. We propose that the transcriptional repressor of BTB and CNC homology 1 (Bach1), which antagonizes Nrf2, could serve as a promising complementary target for the activation of both Nrf2-dependent and Nrf2-independent neuroprotective pathways. This review presents the current knowledge on the Nrf2/Bach1 signaling pathway, its role in various cellular processes, and the benefits of simultaneously inhibiting Bach1 and stabilizing Nrf2 using non-electrophilic small molecules as a novel therapeutic approach for PD.

4.
Molecules ; 27(3)2022 Jan 19.
Artículo en Inglés | MEDLINE | ID: mdl-35163891

RESUMEN

Ginsenoside Rh2 increases the efficacy of doxorubicin (DOX) treatment in murine models of solid and ascites Ehrlich's adenocarcinoma. In a solid tumor model (treatment commencing 7 days after inoculation), DOX + Rh2 co-treatment was significantly more efficacious than DOX alone. If treatment was started 24 h after inoculation, the inhibition of tumor growth of a solid tumor for the DOX + Rh2 co-treatment group was complete. Furthermore, survival in the ascites model was dramatically higher for the DOX + Rh2 co-treatment group than for DOX alone. Mechanisms underlying the combined DOX and Rh2 effects were studied in primary Ehrlich's adenocarcinoma-derived cells and healthy mice's splenocytes. Despite the previously established Rh2 pro-oxidant activity, DOX + Rh2 co-treatment revealed no increase in ROS compared to DOX treatment alone. However, DOX + Rh2 treatment was more effective in suppressing Ehrlich adenocarcinoma cell adhesion than either treatment alone. We hypothesize that the benefits of DOX + Rh2 combination treatment are due to the suppression of tumor cell attachment/invasion that might be effective in preventing metastatic spread of tumor cells. Ginsenoside Rh2 was found to be a modest activator in a Neh2-luc reporter assay, suggesting that Rh2 can activate the Nrf2-driven antioxidant program. Rh2-induced direct activation of Nrf2 might provide additional benefits by minimizing DOX toxicity towards non-cancerous cells.


Asunto(s)
Adenocarcinoma , Medicamentos Herbarios Chinos , Ginsenósidos , Animales , Doxorrubicina/farmacología , Medicamentos Herbarios Chinos/farmacología , Ginsenósidos/farmacología , Ratones
5.
Proc Natl Acad Sci U S A ; 118(45)2021 11 09.
Artículo en Inglés | MEDLINE | ID: mdl-34737234

RESUMEN

Parkinson's disease (PD) is a progressive neurodegenerative movement disorder characterized by the loss of nigrostriatal dopaminergic neurons. Mounting evidence suggests that Nrf2 is a promising target for neuroprotective interventions in PD. However, electrophilic chemical properties of the canonical Nrf2-based drugs cause irreversible alkylation of cysteine residues on cellular proteins resulting in side effects. Bach1 is a known transcriptional repressor of the Nrf2 pathway. We report that Bach1 levels are up-regulated in PD postmortem brains and preclinical models. Bach1 knockout (KO) mice were protected against 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP)-induced dopaminergic neurotoxicity and associated oxidative damage and neuroinflammation. Functional genomic analysis demonstrated that the neuroprotective effects in Bach1 KO mice was due to up-regulation of Bach1-targeted pathways that are associated with both Nrf2-dependent antioxidant response element (ARE) and Nrf2-independent non-ARE genes. Using a proprietary translational technology platform, a drug library screen identified a substituted benzimidazole as a Bach1 inhibitor that was validated as a nonelectrophile. Oral administration of the Bach1 inhibitor attenuated MPTP neurotoxicity in pre- and posttreatment paradigms. Bach1 inhibitor-induced neuroprotection was associated with the up-regulation of Bach1-targeted pathways in concurrence with the results from Bach1 KO mice. Our results suggest that genetic deletion as well as pharmacologic inhibition of Bach1 by a nonelectrophilic inhibitor is a promising therapeutic approach for PD.


Asunto(s)
Factores de Transcripción con Cremalleras de Leucina de Carácter Básico/metabolismo , Neuroprotección , Enfermedad de Parkinson/terapia , 1-Metil-4-fenil-1,2,3,6-Tetrahidropiridina , Anciano , Anciano de 80 o más Años , Animales , Elementos de Respuesta Antioxidante , Factores de Transcripción con Cremalleras de Leucina de Carácter Básico/antagonistas & inhibidores , Factores de Transcripción con Cremalleras de Leucina de Carácter Básico/genética , Estudios de Casos y Controles , Modelos Animales de Enfermedad , Evaluación Preclínica de Medicamentos , Femenino , Humanos , Masculino , Ratones , Ratones Noqueados , Enfermedad de Parkinson/metabolismo , Ratas
6.
Neurochem Int ; 149: 105148, 2021 10.
Artículo en Inglés | MEDLINE | ID: mdl-34329734

RESUMEN

Aspirin is a desired leaving group in prodrugs aimed at treatment of neurodegeneration and other conditions. A library of aspirin derivatives of various scaffolds potentially activating Nrf2 has been tested in Neh2-luc reporter assay which screens for direct Nrf2 protein stabilizers working via disruption of Nrf2-Keap1 interaction. Most aspirin prodrugs had a pro-alkylating or pro-oxidant motif in the structure and, therefore, were toxic at high concentrations. However, among the active compounds, we identified a molecule resembling a well-known Nrf2 displacement activator, bis-1,4-(4-methoxybenzenesulfonamidyl) naphthalene (NMBSA). The direct comparison of the newly identified compound with NMBSA and its improved analog in the reporter assay showed no quenching with N-acetyl cysteine, thus pointing to Nrf2 stabilization mechanism without cysteine alkylation. The potency of the newly identified compound in the reporter assay was much stronger than NMBSA, despite its inhibitory action in the commercial fluorescence polarization assay was observed only in the millimolar range. Molecular docking predicted that mono-deacetylation of the novel prodrug should generate a potent displacement activator. The time-course of reporter activation with the novel prodrug had a pronounced lag-period pointing to a plausible intracellular transformation leading to an active product. Treatment of the novel prodrug with blood plasma or cell lysate demonstrated stepwise deacetylation as judge by liquid chromatography-mass spectrometry (LC-MS). Hence, the esterase-catalyzed hydrolysis of the prodrug liberates only acetyl groups from aspirin moiety and generates a potent Nrf2 activator. The discovered mechanism of prodrug activation makes the newly identified compound a promising lead for future optimization studies.


Asunto(s)
Antiinflamatorios no Esteroideos/farmacología , Aspirina/farmacología , Factor 2 Relacionado con NF-E2/metabolismo , Profármacos/farmacología , Línea Celular Tumoral , Relación Dosis-Respuesta a Droga , Humanos , Factor 2 Relacionado con NF-E2/agonistas , Estructura Terciaria de Proteína
7.
Front Aging Neurosci ; 13: 673205, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-33897412

RESUMEN

The Keap1-Nrf2 signaling axis is a validated and promising target for cellular defense and survival pathways. This minireview discusses the potential off-target effects and their impact on future drug development originating from Keap1-targeting small molecules that function as displacement activators of the redox-sensitive transcription factor Nrf2. We argue that small-molecule displacement activators, similarly to electrophiles, will release both Nrf2 and other Keap1 client proteins from the ubiquitin ligase complex. This non-specificity is likely unavoidable and may result in off-target effects during Nrf2 activation by targeting Keap1. The small molecule displacement activators may also target Kelch domains in proteins other than Keap1, causing additional off-target effects unless designed to ensure specificity for the Kelch domain only in Keap1. A potentially promising and alternative therapeutic approach to overcome this non-specificity emerging from targeting Keap1 is to inhibit the Nrf2 repressor Bach1 for constitutive activation of the Nrf2 pathway and bypass the Keap1-Nrf2 complex.

8.
Antioxid Redox Signal ; 35(7): 580-594, 2021 09 01.
Artículo en Inglés | MEDLINE | ID: mdl-33403895

RESUMEN

Significance: Advancements in and access to health care have led to unprecedented improvements in the quality of life and increased lifespan of human beings in the past century. However, aging is a significant risk factor for neurodegenerative diseases (NDs). Hence, improved life expectancy has led to an increased incidence of NDs. Despite intense research, effective treatments for NDs remain elusive. The future of neurotherapeutics development depends on effective disease modification strategies centered on carefully scrutinized targets. Recent Advances: As a promising new direction, recent evidence has demonstrated that epigenetic processes modify diverse biochemical pathways, including those related to NDs. Small non-coding RNAs, known as microRNAs (miRNAs), are components of the epigenetic system that alter the expression of target genes at the post-transcriptional level. Critical Issues: miRNAs are expressed abundantly in the central nervous system and are critical for the normal functioning and survival of neurons. Here, we review recent advances in elucidating miRNAs' roles in NDs and discuss their potential as therapeutic targets. In particular, neuroinflammation is a major pathological hallmark of NDs and miR146a is a crucial regulator of inflammation. Future Directions: Finally, we explore the possibilities of developing miR146a as a potential biomarker and therapeutic target where additional research may help facilitate the detection and amelioration of neuroinflammation in NDs. Antioxid. Redox Signal. 35, 580-594.


Asunto(s)
MicroARNs , Enfermedades Neurodegenerativas , Sistema Nervioso Central/metabolismo , Humanos , MicroARNs/genética , MicroARNs/metabolismo , Enfermedades Neurodegenerativas/metabolismo , Neuronas/metabolismo , Calidad de Vida
9.
Mol Cell Neurosci ; 101: 103413, 2019 12.
Artículo en Inglés | MEDLINE | ID: mdl-31644952

RESUMEN

Search for a definitive cure for neurodegenerative disorders like Parkinson's disease (PD) has met with little success. Mitochondrial dysfunction and elevated oxidative stress precede characteristic loss of dopamine-producing neurons from the midbrain in PD. The majority of PD cases are classified as sporadic (sPD) with an unknown etiology, whereas mutations in a handful of genes cause monogenic form called familial (fPD). Both sPD and fPD is characterized by proteinopathy and mitochondrial dysfunction leading to increased oxidative stress. These pathophysiological mechanisms create a vicious cycle feeding into each other, ultimately tipping the neurons to its demise. Effect of iron accumulation and dopamine oxidation adds an additional dimension to mitochondrial oxidative stress and apoptotic pathways affected. Nrf2 is a redox-sensitive transcription factor which regulates basal as well as inducible expression of antioxidant enzymes and proteins involved in xenobiotic detoxification. Recent advances, however, shows a multifaceted role for Nrf2 in the regulation of genes connected with inflammatory response, metabolic pathways, protein homeostasis, iron management, and mitochondrial bioenergetics. Here we review the role of mitochondria and oxidative stress in the PD etiology and the potential crosstalk between Nrf2 signaling and mitochondrial function in PD. We also make a case for the development of therapeutics that safely activates Nrf2 pathway in halting the progression of neurodegeneration in PD patients.


Asunto(s)
Mitocondrias/metabolismo , Factor 2 Relacionado con NF-E2/metabolismo , Enfermedad de Parkinson/metabolismo , Animales , Humanos , Estrés Oxidativo , Transducción de Señal
10.
Hum Mol Genet ; 27(16): 2874-2892, 2018 08 15.
Artículo en Inglés | MEDLINE | ID: mdl-29860433

RESUMEN

Impaired glucose metabolism, decreased levels of thiamine and its phosphate esters, and reduced activity of thiamine-dependent enzymes, such as pyruvate dehydrogenase, alpha-ketoglutarate dehydrogenase and transketolase occur in Alzheimer's disease (AD). Thiamine deficiency exacerbates amyloid beta (Aß) deposition, tau hyperphosphorylation and oxidative stress. Benfotiamine (BFT) rescued cognitive deficits and reduced Aß burden in amyloid precursor protein (APP)/PS1 mice. In this study, we examined whether BFT confers neuroprotection against tau phosphorylation and the generation of neurofibrillary tangles (NFTs) in the P301S mouse model of tauopathy. Chronic dietary treatment with BFT increased lifespan, improved behavior, reduced glycated tau, decreased NFTs and prevented death of motor neurons. BFT administration significantly ameliorated mitochondrial dysfunction and attenuated oxidative damage and inflammation. We found that BFT and its metabolites (but not thiamine) trigger the expression of Nrf2/antioxidant response element (ARE)-dependent genes in mouse brain as well as in wild-type but not Nrf2-deficient fibroblasts. Active metabolites were more potent in activating the Nrf2 target genes than the parent molecule BFT. Docking studies showed that BFT and its metabolites (but not thiamine) bind to Keap1 with high affinity. These findings demonstrate that BFT activates the Nrf2/ARE pathway and is a promising therapeutic agent for the treatment of diseases with tau pathology, such as AD, frontotemporal dementia and progressive supranuclear palsy.


Asunto(s)
Elementos de Respuesta Antioxidante/genética , Factor 2 Relacionado con NF-E2/genética , Agregación Patológica de Proteínas/tratamiento farmacológico , Tauopatías/tratamiento farmacológico , Tiamina/análogos & derivados , Péptidos beta-Amiloides/genética , Animales , Encéfalo/efectos de los fármacos , Encéfalo/metabolismo , Encéfalo/patología , Modelos Animales de Enfermedad , Humanos , Proteína 1 Asociada A ECH Tipo Kelch/genética , Ratones , Ratones Transgénicos , Neuroprotección/efectos de los fármacos , Estrés Oxidativo/efectos de los fármacos , Agregación Patológica de Proteínas/genética , Agregación Patológica de Proteínas/patología , Transducción de Señal/efectos de los fármacos , Tauopatías/genética , Tauopatías/fisiopatología , Tiamina/administración & dosificación , Proteínas tau/genética
11.
Neurotoxicology ; 65: 166-173, 2018 03.
Artículo en Inglés | MEDLINE | ID: mdl-29471019

RESUMEN

The heat shock factor 90 (hsp90) complex has long been associated with neuropathological phenotypes linked to Parkinson's disease (PD) and its inhibition is neuroprotective in disease models. Hsp90 is conventionally believed to act by suppressing induction of hsp70. Here, we report a novel hsp70-independent mechanism by which Hsp90 may also contribute to PD-associated neuropathology. We previously reported that inhibition of the enzyme prolyl hydroxylase domain 2 (PHD2) in conjunction with increases in hypoxia-inducible factor 1 alpha (HIF1α) results in protection of vulnerable dopaminergic substantia nigra pars compacta (DAergic SNpc) neurons in in vitro and in vivo models of PD. We discovered an increased interaction between PHD2 and the p23:Hsp90 chaperone complex in response to mitochondrial stress elicited by the mitochondrial neurotoxin 1-methyl-4-phenylpyridine (MPP+) within cultured DAergic cells. Genetic p23 knockdown was found to result in decreases in steady-state PHD2 protein and activity and reduced susceptibility to MPP+ neurotoxicity. Administration of the p23 inhibitor gedunin was also neuroprotective in these cells as well as in human induced pluripotent stem cell (iPSC)-derived neurons. Our data suggests that mitochondrial stress-mediated elevations in PHD2 interaction with the p23-hsp90 complex have detrimental effects on the survival of DAergic neurons, while p23 inhibition is neuroprotective. We propose that neurotoxic effects are tied to enhanced PHD2 stabilization by the hsp90-p23 chaperone complex that is abrogated by p23 inhibition. This demonstrates a novel connection between two independent pathways previously linked to PD, hsp90 and PHD2-HIF1α, which could have important implications for here-to-fore unexplored mechanisms underlying PD neuropathology.


Asunto(s)
Neuronas Dopaminérgicas/patología , Proteínas HSP90 de Choque Térmico/metabolismo , Mitocondrias/patología , Chaperonas Moleculares/metabolismo , Enfermedad de Parkinson/metabolismo , Procolágeno-Prolina Dioxigenasa/metabolismo , 1-Metil-4-fenilpiridinio/antagonistas & inhibidores , Animales , Células Cultivadas , Neuronas Dopaminérgicas/efectos de los fármacos , Técnicas de Silenciamiento del Gen , Prolina Dioxigenasas del Factor Inducible por Hipoxia , Limoninas/farmacología , Mitocondrias/efectos de los fármacos , Chaperonas Moleculares/antagonistas & inhibidores , Chaperonas Moleculares/genética , Fármacos Neuroprotectores/farmacología , Ratas
12.
Biochimie ; 147: 46-54, 2018 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-29289682

RESUMEN

L-Ascorbate (L-Asc), but not D-isoascorbate (D-Asc) and N-acetylcysteine (NAC) suppress HIF1 ODD-luc reporter activation induced by various inhibitors of HIF prolyl hydroxylase (PHD). The efficiency of suppression by L-Asc was sensitive to the nature of HIF PHD inhibitor chosen for reporter activation. In particular, the inhibitors developed to compete with alpha-ketoglutarate (αKG), were less sensitive to suppression by the physiological range of L-Asc (40-100 µM) than those having a strong iron chelation motif. Challenging those HIF activators in the reporter system with D-Asc demonstrated that the D-isomer, despite exhibiting the same reducing potency with respect to ferric iron, had almost no effect compared to L-Asc. Similarly, no effect on reporter activation was observed with cell-permeable reducing agent NAC up to 1 mM. Docking of L-Asc and D-Asc acid into the HIF PHD2 crystal structure showed interference of Tyr310 with respect to D-Asc. This suggests that L-Asc is not merely a reducing agent preventing enzyme inactivation. Rather, the overall results identify L-Asc as a co-substrate of HIF PHD that may compete for the binding site of αKG in the enzyme active center. This conclusion is in agreement with the results obtained recently in cell-based systems for TET enzymes and jumonji histone demethylases, where L-Asc has been proposed to act as a co-substrate and not as a reducing agent preventing enzyme inactivation.


Asunto(s)
Ácido Ascórbico/metabolismo , Prolil Hidroxilasas/metabolismo , Prolil Hidroxilasas/farmacología , Ácido Ascórbico/química , Línea Celular Tumoral , Humanos , Inhibidores de Prolil-Hidroxilasa/farmacología , Unión Proteica , Estereoisomerismo
13.
ACS Chem Neurosci ; 9(5): 894-900, 2018 05 16.
Artículo en Inglés | MEDLINE | ID: mdl-29338172

RESUMEN

Activation of HIF-1α and Nrf2 is a primary component of cellular response to oxidative stress, and activation of HIF-1α and Nrf2 provides neuroprotection in models of neurodegenerative disorders, including ischemic stroke, Alzheimer's and Parkinson's diseases. Screening a library of CNS-targeted drugs using novel reporters for HIF-1α and Nrf2 elevation in neuronal cells revealed histone deacetylase (HDAC) inhibitors as potential activators of these pathways. We report the identification of phenylhydroxamates as single agents exhibiting tripartite inhibition of HDAC6, inhibition of HIF-1 prolyl hydroxylase (PHD), and activation of Nrf2. Two superior tripartite agents, ING-6 and ING-66, showed neuroprotection against various cellular insults, associated with stabilization of both Nrf2 and HIF-1, and expression of their respective target genes in vitro and in vivo. Discovery of the innate ability of phenylhydroxamate HDAC inhibitors to activate Nrf2 and HIF provides a novel route to multifunctional neuroprotective agents and cautions against HDAC6 selective inhibitors as chemical probes of specific HDAC isoform function.


Asunto(s)
Histona Desacetilasa 6/metabolismo , Factor 2 Relacionado con NF-E2/metabolismo , Estrés Oxidativo/efectos de los fármacos , Inhibidores de Histona Desacetilasas/farmacología , Humanos , Hidroxilaminas/farmacología , Enfermedades Neurodegenerativas/tratamiento farmacológico , Neuronas/efectos de los fármacos , Fármacos Neuroprotectores/farmacología
14.
Life Sci ; 177: 49-59, 2017 May 15.
Artículo en Inglés | MEDLINE | ID: mdl-28286225

RESUMEN

AIMS: Inflammation is considered to be one of the crucial pathological factors associated with the development of Alzheimer's disease, although supportive experimental evidence remains undiscovered. Therefore, the current study was carried out to better understand and establish the pathophysiological involvement of chronic inflammation in a double transgenic mouse model of Alzheimer's disease. MAIN METHODS: We analyzed amyloid-beta deposition, oxidative stress, biochemical, neurochemical and immunological markers in a 10month old (APΔE9) mouse model. Memory functions were assessed by behavioral testing followed by measurement of synaptic plasticity via extracellular field recordings. KEY FINDINGS: Substantial increases in amyloid-beta levels, beta-secretase activity, and oxidative stress, along with significant neurochemical alterations in glutamate and GABA levels were detected in the brain of APΔE9 mice. Interestingly, marked elevations of pro-inflammatory cytokines in whole brain lysate of APΔE9 mice were observed. Flow cytometric analysis revealed a higher frequency of CD4+ IL-17a and IFN-γ secreting T-cells in APΔE9 brain, indicating a robust T-cell infiltration and activation. Behavioral deficits in learning and memory tasks, along with impairment in long-term potentiation and associated biochemical changes in the expression of glutamatergic receptor subunits were evident. SIGNIFICANCE: Thus, this study establishes the role by which oxidative stress, alterations in glutamate and GABA levels and inflammation increases hippocampal and cortical neurotoxicity resulting in the cognitive deficits associated with Alzheimer's disease.


Asunto(s)
Enfermedad de Alzheimer/fisiopatología , Trastornos del Conocimiento/fisiopatología , Inflamación/fisiopatología , Trastornos de la Memoria/fisiopatología , Enfermedad de Alzheimer/inmunología , Secretasas de la Proteína Precursora del Amiloide/metabolismo , Péptidos beta-Amiloides/metabolismo , Animales , Trastornos del Conocimiento/etiología , Citocinas/metabolismo , Modelos Animales de Enfermedad , Citometría de Flujo , Ácido Glutámico/metabolismo , Hipocampo/patología , Inflamación/inmunología , Masculino , Trastornos de la Memoria/etiología , Ratones , Ratones Endogámicos C57BL , Ratones Transgénicos , Plasticidad Neuronal , Estrés Oxidativo/fisiología , Ácido gamma-Aminobutírico/metabolismo
15.
J Neurosci ; 36(23): 6332-51, 2016 06 08.
Artículo en Inglés | MEDLINE | ID: mdl-27277809

RESUMEN

UNLABELLED: A promising approach to neurotherapeutics involves activating the nuclear-factor-E2-related factor 2 (Nrf2)/antioxidant response element signaling, which regulates expression of antioxidant, anti-inflammatory, and cytoprotective genes. Tecfidera, a putative Nrf2 activator, is an oral formulation of dimethylfumarate (DMF) used to treat multiple sclerosis. We compared the effects of DMF and its bioactive metabolite monomethylfumarate (MMF) on Nrf2 signaling and their ability to block 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP)-induced experimental Parkinson's disease (PD). We show that in vitro DMF and MMF activate the Nrf2 pathway via S-alkylation of the Nrf2 inhibitor Keap1 and by causing nuclear exit of the Nrf2 repressor Bach1. Nrf2 activation by DMF but not MMF was associated with depletion of glutathione, decreased cell viability, and inhibition of mitochondrial oxygen consumption and glycolysis rates in a dose-dependent manner, whereas MMF increased these activities in vitro However, both DMF and MMF upregulated mitochondrial biogenesis in vitro in an Nrf2-dependent manner. Despite the in vitro differences, both DMF and MMF exerted similar neuroprotective effects and blocked MPTP neurotoxicity in wild-type but not in Nrf2 null mice. Our data suggest that DMF and MMF exhibit neuroprotective effects against MPTP neurotoxicity because of their distinct Nrf2-mediated antioxidant, anti-inflammatory, and mitochondrial functional/biogenetic effects, but MMF does so without depleting glutathione and inhibiting mitochondrial and glycolytic functions. Given that oxidative damage, neuroinflammation, and mitochondrial dysfunction are all implicated in PD pathogenesis, our results provide preclinical evidence for the development of MMF rather than DMF as a novel PD therapeutic. SIGNIFICANCE STATEMENT: Almost two centuries since its first description by James Parkinson, Parkinson's disease (PD) remains an incurable disease with limited symptomatic treatment. The current study provides preclinical evidence that a Food and Drug Administration-approved drug, dimethylfumarate (DMF), and its metabolite monomethylfumarate (MMF) can block nigrostriatal dopaminergic neurodegeneration in a 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine mouse model of PD. We elucidated mechanisms by which DMF and its active metabolite MMF activates the redox-sensitive transcription factor nuclear-factor-E2-related factor 2 (Nrf2) to upregulate antioxidant, anti-inflammatory, mitochondrial biosynthetic and cytoprotective genes to render neuroprotection via distinct S-alkylating properties and depletion of glutathione. Our data suggest that targeting Nrf2-mediated gene transcription using MMF rather than DMF is a promising approach to block oxidative stress, neuroinflammation, and mitochondrial dysfunction for therapeutic intervention in PD while minimizing side effects.


Asunto(s)
Fumaratos/uso terapéutico , Factor 2 Relacionado con NF-E2/metabolismo , Fármacos Neuroprotectores/uso terapéutico , Trastornos Parkinsonianos/inducido químicamente , Trastornos Parkinsonianos/tratamiento farmacológico , Transducción de Señal/efectos de los fármacos , 1-Metil-4-fenil-1,2,3,6-Tetrahidropiridina/farmacología , Animales , Antígenos CD/metabolismo , Línea Celular Transformada , Modelos Animales de Enfermedad , Relación Dosis-Respuesta a Droga , Fumaratos/farmacología , Regulación de la Expresión Génica/efectos de los fármacos , Regulación de la Expresión Génica/genética , Humanos , Maleatos/farmacología , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Factor 2 Relacionado con NF-E2/genética , Trastornos Parkinsonianos/prevención & control , Ratas , Tirosina/análogos & derivados , Tirosina/farmacología
16.
Life Sci ; 154: 24-9, 2016 Jun 01.
Artículo en Inglés | MEDLINE | ID: mdl-26926078

RESUMEN

AIMS: Methamphetamine (Schedule-II drug, U.S. Drug Enforcement Administration) is one of the most abused illicit drug following cocaine, marijuana, and heroin in the USA. There are numerous health impairments and substantial economic burden caused by methamphetamine abuse. Salicylic acid, potent anti-inflammatory drug and a known neuroprotectant has shown to protect against toxicity-induced by other dopaminergic neurotoxins. Hence, in this study we investigated the neuroprotective effects of salicylic acid against methamphetamine-induced toxicity in mice. MAIN METHODS: The current study investigated the effects of sodium salicylate and/or methamphetamine on oxidative stress, monoamine oxidase, mitochondrial complex I & IV activities using spectrophotometric and fluorimetric methods. Behavioral analysis evaluated the effect on movement disorders-induced by methamphetamine. Monoaminergic neurotransmitter levels were evaluated using high pressure liquid chromatography-electrochemical detection. KEY FINDINGS: Methamphetamine caused significant generation of reactive oxygen species and decreased complex-I activity leading to dopamine depletion. Striatal dopamine depletion led to significant behavioral changes associated with movement disorders. Sodium salicylate (50 & 100mg/kg) significantly scavenged reactive oxygen species, blocked mitochondrial dysfunction and exhibited neuroprotection against methamphetamine-induced neurotoxicity. In addition, sodium salicylate significantly blocked methamphetamine-induced behavioral changes related to movement abnormalities. SIGNIFICANCE: One of the leading causative theories in nigral degeneration associated with movement disorders such as Parkinson's disease is exposure to stimulants, drugs of abuse, insecticide and pesticides. These neurotoxic substances can induce dopaminergic neuronal insult by oxidative stress, apoptosis, mitochondrial dysfunction and inflammation. Salicylic acid due to its antioxidant and anti-inflammatory effects could provide neuroprotection against the stimulants or drugs of abuse.


Asunto(s)
Dopamina/metabolismo , Metanfetamina/toxicidad , Fármacos Neuroprotectores/farmacología , Ácido Salicílico/farmacología , Animales , Masculino , Ratones , Ratones Endogámicos C57BL
17.
Neurobiol Aging ; 36(3): 1451-61, 2015 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-25510319

RESUMEN

Diabetes and Alzheimer's disease share pathologic links toward cognitive deficits. Pharmacologic agonist of the nuclear receptor, peroxisomal proliferator-activating receptor gamma (PPARγ), that is, rosiglitazone (rosi), are insulin sensitizing agents that improve memory in Alzheimer's disease. However, direct molecular signaling targets that improve memory by PPARγ in the hippocampus have not been investigated. We compared outcomes from oral versus intracerebroventricular (ICV) administration of rosi on memory and changes in synaptic plasticity in type 2 diabetic (db/db) mice. Db/db mice treated with rosi (ICV) showed significant improvement in memory, long-term potentiation, and post-tetanic potentiation but did not improve peripheral insulin sensitivity. Gene and protein analysis revealed increased brain-derived neurotrophic factor (BDNF) in db/db mice treated with rosi (ICV). Transcriptional activation of exon IX as determined by luciferase assays confirmed PPARγ regulation of BDNF promoter activity. Transient transfection of constitutively active PPARγ plasmid in hippocampal neuronal cells induced increased BDNF, AMPA, and NMDA receptors expression and spine formation. Findings from the present study implicate a novel PPARγ-BDNF molecular signaling mechanism as a potential therapeutic target for cognitive impairment.


Asunto(s)
Factor Neurotrófico Derivado del Encéfalo/genética , Factor Neurotrófico Derivado del Encéfalo/metabolismo , Trastornos del Conocimiento/etiología , Trastornos del Conocimiento/terapia , Diabetes Mellitus Tipo 2/complicaciones , Expresión Génica/efectos de los fármacos , Hipoglucemiantes/administración & dosificación , Hipoglucemiantes/farmacología , Plasticidad Neuronal/efectos de los fármacos , Plasticidad Neuronal/genética , PPAR gamma/agonistas , PPAR gamma/fisiología , Tiazolidinedionas/administración & dosificación , Tiazolidinedionas/farmacología , Administración Oral , Animales , Trastornos del Conocimiento/genética , Trastornos del Conocimiento/psicología , Modelos Animales de Enfermedad , Hipocampo/metabolismo , Inyecciones Intraventriculares , Resistencia a la Insulina , Masculino , Memoria/efectos de los fármacos , Ratones Endogámicos C57BL , Terapia Molecular Dirigida , PPAR gamma/metabolismo , Rosiglitazona
18.
Life Sci ; 101(1-2): 37-42, 2014 Apr 17.
Artículo en Inglés | MEDLINE | ID: mdl-24560859

RESUMEN

AIMS: There is a rapid increase in the use of methylenedioxymethamphetamine (MDMA) and its structural congeners/analogs globally. MDMA and MDMA-analogs have been synthesized illegally in furtive dwellings and are abused due to its addictive potential. Furthermore, MDMA and MDMA-analogs have shown to have induced several adverse effects. Hence, understanding the mechanisms mediating this neurotoxic insult of MDMA-analogs is of immense importance for the public health in the world. MAIN METHODS: We synthesized and investigated the neurotoxic effects of MDMA and its analogs [4-methylenedioxyamphetamine (MDA), 2, 6-methylenedioxyamphetamine (MDMA), and N-ethyl-3, 4-methylenedioxyamphetamine (MDEA)]. The stimulatory or the dopaminergic agonist effects of MDMA and MDMA-analogs were elucidated using the established 6-hydroxydopamine lesioned animal model. Additionally, we also investigated the neurotoxic mechanisms of MDMA and MDMA-analogs on mitochondrial complex-I activity and reactive oxygen species generation. KEY FINDINGS: MDMA and MDMA-analogs exhibited stimulatory activity as compared to amphetamines and also induced several behavioral changes in the rodents. MDMA and MDMA-analogs enhanced the reactive oxygen generation and inhibited mitochondrial complex-I activity which can lead to neurodegeneration. Hence the mechanism of neurotoxicity, MDMA and MDMA-analogs can enhance the release of monoamines, alter the monoaminergic neurotransmission, and augment oxidative stress and mitochondrial abnormalities leading to neurotoxicity. SIGNIFICANCE: Thus, our study will help in developing effective pharmacological and therapeutic approaches for the treatment of MDMA and MDMA-analog abuse.


Asunto(s)
Conducta Animal/efectos de los fármacos , Agonistas de Dopamina/toxicidad , Complejo I de Transporte de Electrón/metabolismo , N-Metil-3,4-metilenodioxianfetamina/análogos & derivados , N-Metil-3,4-metilenodioxianfetamina/toxicidad , Especies Reactivas de Oxígeno/metabolismo , Animales , Encéfalo/efectos de los fármacos , Encéfalo/metabolismo , Masculino , Proteínas Mitocondriales/metabolismo , Oxidopamina , Ratas
19.
Toxicol Lett ; 225(3): 479-87, 2014 Mar 21.
Artículo en Inglés | MEDLINE | ID: mdl-24472609

RESUMEN

There is concern that early-life exposure to bisphenol A (BPA) may alter developmental programming and predispose individuals to obesity and reproductive anomalies. The present study was designed to determine if a high fat diet at sexual maturation moderates testicular toxicity occasioned by exposure to BPA during reproductive development. Therefore, male rats were exposed to BPA by maternal gavage (0, 2.5 or 25 µg/kg body weight/day) from gestational day 12 to postnatal day 21. At weaning, control and BPA-exposed animals were placed on a regular normal fat diet (NFD) until 70 days of age when they were continued on the NFD or were maintained on a high fat diet (HFD) until euthanasia at 98 days. Adult male rats maintained on HFD were generally heavier than NFD animals due to greater energy intake but energy intake per unit body weight gain was similar in all animals. However, perinatal exposure to BPA decreased (P<0.05) serum adiponectin as well as adiponectin and AdipoR2 protein expression levels in Leydig cells. Importantly, the combination of BPA exposure and HFD consumption promoted lipid peroxidation evidenced by elevated serum thiobarbituric acid reactive substances and glutathione concentrations. These findings imply that interaction between BPA and HFD potentially causes testicular dysfunction to a greater degree than would be due to BPA exposure or HFD consumption. Given the relationship that exists between energy homeostasis and reproductive activity, additional studies are warranted to investigate the consequences of BPA-diet interactions on testicular function.


Asunto(s)
Compuestos de Bencidrilo/toxicidad , Dieta Alta en Grasa/efectos adversos , Estrógenos no Esteroides/toxicidad , Fenoles/toxicidad , Efectos Tardíos de la Exposición Prenatal , Maduración Sexual/efectos de los fármacos , Testículo/efectos de los fármacos , Adiponectina/sangre , Animales , Western Blotting , Peso Corporal/fisiología , Estradiol/sangre , Femenino , Células Intersticiales del Testículo/efectos de los fármacos , Células Intersticiales del Testículo/metabolismo , Masculino , Embarazo , Ratas , Ratas Long-Evans , Receptores de Adiponectina/sangre , Maduración Sexual/fisiología , Testículo/citología , Testículo/metabolismo , Testosterona/sangre
20.
Life Sci ; 95(2): 108-17, 2014 Jan 30.
Artículo en Inglés | MEDLINE | ID: mdl-24361361

RESUMEN

AIMS: The British Petroleum (BP) oil spill has raised several ecological and health concerns. As the first response, BP used a chemical dispersant, Corexit-9500, to disperse the crude oil in the Gulf of Mexico to limit shoreline contamination problems. Nevertheless, portions of this oil/Corexit mixture reached the shoreline and still remain in various Gulf shore environments. The use of Corexit itself has become a significant concern since its impacts on human health and environment is unclear. MAIN METHODS: In this study, in vitro cytotoxic effects of Corexit were evaluated using different mammalian cells. KEY FINDINGS: Under serum free conditions, the LC50 value for Corexit in BL16/BL6 cell was 16 ppm, in 1321N1 cell was 33 ppm, in H19-7 cell was 70 ppm, in HEK293 was 93 ppm, and in HK-2 cell was 95 ppm. With regard to the mechanisms of cytotoxicity, we hypothesize that Corexit can possibly induce cytotoxicity in mammalian cells by altering the intracellular oxidative balance and inhibiting mitochondrial functions. Corexit induced increased reactive oxygen species and lipid peroxide levels; also, it depleted glutathione content and altered catalase activity in H19-7 cells. In addition, there was mitochondrial complex-I inhibition and increase in the pro-apoptotic factors including caspase-3 and BAX expression. SIGNIFICANCE: The experimental results show changes in intracellular oxidative radicals leading to mitochondrial dysfunctions and apoptosis in Corexit treatments, possibly contributing to cell death. Our findings raise concerns about using large volumes of Corexit, a potential environmental toxin, in sensitive ocean environments.


Asunto(s)
Supervivencia Celular/efectos de los fármacos , Lípidos/toxicidad , Contaminantes Químicos del Agua/toxicidad , Línea Celular , Células Cultivadas , Relación Dosis-Respuesta a Droga , Células HEK293 , Humanos , Dosificación Letal Mediana , Peroxidación de Lípido/efectos de los fármacos , Mitocondrias/efectos de los fármacos , Especies Reactivas de Oxígeno/análisis
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA