Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 21
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
Front Behav Neurosci ; 17: 1140657, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37456809

RESUMEN

Honey bees represent an iconic model animal for studying the underlying mechanisms affecting advanced sensory and cognitive abilities during communication among colony mates. After von Frisch discovered the functional value of the waggle dance, this complex motor pattern led ethologists and neuroscientists to study its neural mechanism, behavioral significance, and implications for a collective organization. Recent studies have revealed some of the mechanisms involved in this symbolic form of communication by using conventional behavioral and pharmacological assays, neurobiological studies, comprehensive molecular and connectome analyses, and computational models. This review summarizes several critical behavioral and brain processes and mechanisms involved in waggle dance communication. We focus on the role of neuromodulators in the dancer and the recruited follower, the interneurons and their related processing in the first mechano-processing, and the computational navigation centers of insect brains.

2.
Sci Rep ; 11(1): 20883, 2021 10 22.
Artículo en Inglés | MEDLINE | ID: mdl-34686710

RESUMEN

Olfaction is a crucial sensory modality underlying foraging, social and mating behaviors in many insects. Since the olfactory system is at the interface between the animal and its environment, it receives strong evolutionary pressures that promote neuronal adaptations and phenotypic variations across species. Hornets are large eusocial predatory wasps with a highly developed olfactory system, critical for foraging and intra-specific communication. In their natural range, hornet species display contrasting ecologies and olfactory-based behaviors, which might match to adaptive shifts in their olfactory system. The first olfactory processing center of the insect brain, the antennal lobe, is made of morphological and functional units called glomeruli. Using fluorescent staining, confocal microscopy and 3D reconstructions, we compared antennal lobe structure, glomerular numbers and volumes in four hornet species (Vespa crabro, Vespa velutina, Vespa mandarinia and Vespa orientalis) with marked differences in nesting site preferences and predatory behaviors. Despite a conserved organization of their antennal lobe compartments, glomeruli numbers varied strongly between species, including in a subsystem thought to process intraspecific cuticular signals. Moreover, specific adaptations involving enlarged glomeruli appeared in two species, V. crabro and V. mandarinia, but not in the others. We discuss the possible function of these adaptations based on species-specific behavioral differences.


Asunto(s)
Antenas de Artrópodos/fisiología , Abejas/fisiología , Avispas/fisiología , Animales , Encéfalo/fisiología , Neuronas Receptoras Olfatorias/fisiología , Especificidad de la Especie
3.
Insects ; 10(10)2019 Oct 11.
Artículo en Inglés | MEDLINE | ID: mdl-31614450

RESUMEN

Since the honeybee possesses eusociality, advanced learning, memory ability, and information sharing through the use of various pheromones and sophisticated symbol communication (i.e., the "waggle dance"), this remarkable social animal has been one of the model symbolic animals for biological studies, animal ecology, ethology, and neuroethology. Karl von Frisch discovered the meanings of the waggle dance and called the communication a "dance language." Subsequent to this discovery, it has been extensively studied how effectively recruits translate the code in the dance to reach the advertised destination and how the waggle dance information conflicts with the information based on their own foraging experience. The dance followers, mostly foragers, detect and interact with the waggle dancer, and are finally recruited to the food source. In this review, we summarize the current state of knowledge on the neural processing underlying this fascinating behavior.

4.
eNeuro ; 6(5)2019.
Artículo en Inglés | MEDLINE | ID: mdl-31451603

RESUMEN

Honeybees are social insects, and individual bees take on different social roles as they mature, performing a multitude of tasks that involve multi-modal sensory integration. Several activities vital for foraging, like flight and waggle dance communication, involve sensing air vibrations through their antennae. We investigated changes in the identified vibration-sensitive interneuron DL-Int-1 in the honeybee Apis mellifera during maturation by comparing properties of neurons from newly emerged adult and forager honeybees. Although comparison of morphological reconstructions of the neurons revealed no significant changes in gross dendritic features, consistent and region-dependent changes were found in dendritic density. Comparison of electrophysiological properties showed an increase in the firing rate differences between stimulus and nonstimulus periods in foragers compared with newly emerged adult bees. The observed differences in neurons of foragers compared with newly emerged adult honeybees suggest refined connectivity, improved signal propagation, and enhancement of response features possibly important for the network processing of air vibration signals relevant for the waggle dance communication of honeybees.


Asunto(s)
Adaptación Fisiológica/fisiología , Interneuronas/fisiología , Actividad Motora/fisiología , Maduración Sexual/fisiología , Conducta Social , Vibración , Factores de Edad , Animales , Abejas , Femenino
5.
Front Neuroinform ; 12: 61, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-30319384

RESUMEN

The morphology of a neuron is strongly related to its physiological properties, application of logical product and thus to information processing functions. Optical microscope images are widely used for extracting the structure of neurons. Although several approaches have been proposed to trace and extract complex neuronal structures from microscopy images, available methods remain prone to errors. In this study, we present a practical scheme for processing confocal microscope images and reconstructing neuronal structures. We evaluated this scheme using image data samples and associated "gold standard" reconstructions from the BigNeuron Project. In these samples, dendritic arbors belonging to multiple projection branches of the same neuron overlapped in space, making it difficult to automatically and accurately trace their structural connectivity. Our proposed scheme, which combines several software tools for image masking and filtering with an existing tool for dendritic segmentation and tracing, outperformed state-of-the-art automatic methods in reconstructing such neuron structures. For evaluating our scheme, we applied it to a honeybee local interneuron, DL-Int-1, which has complex arbors and is considered to be a critical neuron for encoding the distance information indicated in the waggle dance of the honeybee.

6.
Front Psychol ; 9: 1517, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-30186204

RESUMEN

Insects have acquired excellent sensory information processing abilities in the process of evolution. In addition, insects have developed communication schemes based on the temporal patterns of specific sensory signals. For instance, male moths approach a female by detecting the spatiotemporal pattern of a pheromone plume released by the female. Male crickets attract a conspecific female as a mating partner using calling songs with species-specific temporal patterns. The dance communication of honeybees relies on a unique temporal pattern of vibration caused by wingbeats during the dance. Underlying these behaviors, neural circuits involving inhibitory connections play a critical common role in processing the exact timing of the signals in the primary sensory centers of the brain. Here, we discuss common mechanisms for processing the temporal patterns of sensory signals in the insect brain.

7.
BMC Bioinformatics ; 19(1): 143, 2018 04 18.
Artículo en Inglés | MEDLINE | ID: mdl-29669537

RESUMEN

BACKGROUND: Morphological features are widely used in the study of neuronal function and pathology. Invertebrate neurons are often structurally stereotypical, showing little variance in gross spatial features but larger variance in their fine features. Such variability can be quantified using detailed spatial analysis, which however requires the morphologies to be registered to a common frame of reference. RESULTS: We outline here new algorithms - Reg-MaxS and Reg-MaxS-N - for co-registering pairs and groups of morphologies, respectively. Reg-MaxS applies a sequence of translation, rotation and scaling transformations, estimating at each step the transformation parameters that maximize spatial overlap between the volumes occupied by the morphologies. We test this algorithm with synthetic morphologies, showing that it can account for a wide range of transformation differences and is robust to noise. Reg-MaxS-N co-registers groups of more than two morphologies by iteratively calculating an average volume and registering all morphologies to this average using Reg-MaxS. We test Reg-MaxS-N using five groups of morphologies from the Droshophila melanogaster brain and identify the cases for which it outperforms existing algorithms and produce morphologies very similar to those obtained from registration to a standard brain atlas. CONCLUSIONS: We have described and tested algorithms for co-registering pairs and groups of neuron morphologies. We have demonstrated their application to spatial comparison of stereotypic morphologies and calculation of dendritic density profiles, showing how our algorithms for registering neuron morphologies can enable new approaches in comparative morphological analyses and visualization.


Asunto(s)
Algoritmos , Drosophila melanogaster/citología , Neuronas/citología , Animales , Encéfalo/citología , Análisis de Componente Principal
8.
J Neurosci ; 37(44): 10624-10635, 2017 11 01.
Artículo en Inglés | MEDLINE | ID: mdl-28993484

RESUMEN

Female honeybees use the "waggle dance" to communicate the location of nectar sources to their hive mates. Distance information is encoded in the duration of the waggle phase (von Frisch, 1967). During the waggle phase, the dancer produces trains of vibration pulses, which are detected by the follower bees via Johnston's organ located on the antennae. To uncover the neural mechanisms underlying the encoding of distance information in the waggle dance follower, we investigated morphology, physiology, and immunohistochemistry of interneurons arborizing in the primary auditory center of the honeybee (Apis mellifera). We identified major interneuron types, named DL-Int-1, DL-Int-2, and bilateral DL-dSEG-LP, that responded with different spiking patterns to vibration pulses applied to the antennae. Experimental and computational analyses suggest that inhibitory connection plays a role in encoding and processing the duration of vibration pulse trains in the primary auditory center of the honeybee.SIGNIFICANCE STATEMENT The waggle dance represents a form of symbolic communication used by honeybees to convey the location of food sources via species-specific sound. The brain mechanisms used to decipher this symbolic information are unknown. We examined interneurons in the honeybee primary auditory center and identified different neuron types with specific properties. The results of our computational analyses suggest that inhibitory connection plays a role in encoding waggle dance signals. Our results are critical for understanding how the honeybee deciphers information from the sound produced by the waggle dance and provide new insights regarding how common neural mechanisms are used by different species to achieve communication.


Asunto(s)
Comunicación Animal , Corteza Auditiva/fisiología , Baile/fisiología , Interneuronas/fisiología , Vibración , Animales , Antenas de Artrópodos/fisiología , Corteza Auditiva/citología , Abejas , Femenino , Actividad Motora/fisiología
9.
J Exp Biol ; 219(Pt 1): 12-6, 2016 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-26567342

RESUMEN

The odor localization strategy induced by odors learned via differential conditioning of the proboscis extension response was investigated in honeybees. In response to reward-associated but not non-reward-associated odors, learners walked longer paths than non-learners and control bees. When orange odor reward association was learned, the path length and the body turn angles were small during odor stimulation and greatly increased after stimulation ceased. In response to orange odor, bees walked locally with alternate left and right turns during odor stimulation to search for the reward-associated odor source. After odor stimulation, bees walked long paths with large turn angles to explore the odor plume. For clove odor, learning-related modulations of locomotion were less pronounced, presumably due to a spontaneous preference for orange in the tested population of bees. This study is the first to describe how an odor-reward association modulates odor-induced walking in bees.


Asunto(s)
Abejas/fisiología , Odorantes , Recompensa , Animales , Aprendizaje por Asociación , Aceite de Clavo , Condicionamiento Clásico , Femenino , Aceites de Plantas , Olfato/fisiología , Caminata
10.
Front Neuroinform ; 8: 55, 2014.
Artículo en Inglés | MEDLINE | ID: mdl-24971059

RESUMEN

Neuroscience today deals with a "data deluge" derived from the availability of high-throughput sensors of brain structure and brain activity, and increased computational resources for detailed simulations with complex output. We report here (1) a novel approach to data sharing between collaborating scientists that brings together file system tools and cloud technologies, (2) a service implementing this approach, called NeuronDepot, and (3) an example application of the service to a complex use case in the neurosciences. The main drivers for our approach are to facilitate collaborations with a transparent, automated data flow that shields scientists from having to learn new tools or data structuring paradigms. Using NeuronDepot is simple: one-time data assignment from the originator and cloud based syncing-thus making experimental and modeling data available across the collaboration with minimum overhead. Since data sharing is cloud based, our approach opens up the possibility of using new software developments and hardware scalabitliy which are associated with elastic cloud computing. We provide an implementation that relies on existing synchronization services and is usable from all devices via a reactive web interface. We are motivating our solution by solving the practical problems of the GinJang project, a collaboration of three universities across eight time zones with a complex workflow encompassing data from electrophysiological recordings, imaging, morphological reconstructions, and simulations.

11.
Sensors (Basel) ; 13(7): 9344-63, 2013 Jul 19.
Artículo en Inglés | MEDLINE | ID: mdl-23877129

RESUMEN

Insects use airborne vibrations caused by their own movements to control their behaviors and produce airborne vibrations to communicate with conspecific mates. In this review, I use two examples to introduce how insects use airborne vibrations to accurately control behavior or for communication. The first example is vibration-sensitive sensilla along the wing margin that stabilize wingbeat frequency. There are two specialized sensors along the wing margin for detecting the airborne vibration caused by wingbeats. The response properties of these sensors suggest that each sensor plays a different role in the control of wingbeats. The second example is Johnston's organ that contributes to regulating flying speed and perceiving vector information about food sources to hive-mates. There are parallel vibration processing pathways in the central nervous system related with these behaviors, flight and communication. Both examples indicate that the frequency of airborne vibration are filtered on the sensory level and that on the central nervous system level, the extracted vibration signals are integrated with other sensory signals for executing quick adaptive motor response.


Asunto(s)
Abejas/fisiología , Biomimética/métodos , Bombyx/fisiología , Vuelo Animal/fisiología , Propiocepción/fisiología , Sensilos/fisiología , Alas de Animales/inervación , Alas de Animales/fisiología , Animales , Vibración
12.
J Comp Neurol ; 521(11): 2570-84, 2013 Aug 01.
Artículo en Inglés | MEDLINE | ID: mdl-23297020

RESUMEN

The waggle dancers of honeybees encodes roughly the distance and direction to the food source as the duration of the waggle phase and the body angle during the waggle phase. It is believed that hive-mates detect airborne vibrations produced during the waggle phase to acquire distance information and simultaneously detect the body axis during the waggle phase to acquire direction information. It has been further proposed that the orientation of the body axis on the vertical comb is detected by neck hairs (NHs) on the prosternal organ. The afferents of the NHs project into the prothoracic and mesothoracic ganglia and the dorsal subesophageal ganglion (dSEG). This study demonstrates somatotopic organization within the dSEG of the central projections of the mechanosensory neurons of the NHs. The terminals of the NH afferents in dSEG are in close apposition to those of Johnston's organ (JO) afferents. The sensory axons of both terminate in a region posterior to the crossing of the ventral intermediate tract (VIT) and the maxillary dorsal commissures I and III (MxDCI, III) in the subesophageal ganglion. These features of the terminal areas of the NH and JO afferents are common to the worker, drone, and queen castes of honeybees. Analysis of the spatial relationship between the NH neurons and the morphologically and physiologically characterized vibration-sensitive interneurons DL-Int-1 and DL-Int-2 demonstrated that several branches of DL-Int-1 are in close proximity to the central projection of the mechanosensory neurons of the NHs in the dSEG.


Asunto(s)
Comunicación Animal , Abejas/fisiología , Encéfalo/anatomía & histología , Encéfalo/fisiología , Percepción Espacial/fisiología , Animales , Antenas de Artrópodos/fisiología , Femenino , Ganglios de Invertebrados/anatomía & histología , Ganglios de Invertebrados/fisiología , Cabello/fisiología , Interneuronas/fisiología , Masculino , Microscopía Confocal , Red Nerviosa/citología , Red Nerviosa/fisiología , Terminales Presinápticos/fisiología , Células Receptoras Sensoriales/fisiología , Vibración
13.
Insects ; 5(1): 92-104, 2013 Dec 31.
Artículo en Inglés | MEDLINE | ID: mdl-26462581

RESUMEN

It is known that the honeybee, Apis mellifera, uses olfactory stimulus as important information for orienting to food sources. Several studies on olfactory-induced orientation flight have been conducted in wind tunnels and in the field. From these studies, optical sensing is used as the main information with the addition of olfactory signals and the navigational course followed by these sensory information. However, it is not clear how olfactory information is reflected in the navigation of flight. In this study, we analyzed the detailed properties of flight when oriented to an odor source in a wind tunnel. We recorded flying bees with a video camera to analyze the flight area, speed, angular velocity and trajectory. After bees were trained to be attracted to a feeder, the flight trajectories with or without the olfactory stimulus located upwind of the feeder were compared. The results showed that honeybees flew back and forth in the proximity of the odor source, and the search range corresponded approximately to the odor spread area. It was also shown that the angular velocity was different inside and outside the odor spread area, and trajectories tended to be bent or curved just outside the area.

14.
Front Syst Neurosci ; 6: 55, 2012.
Artículo en Inglés | MEDLINE | ID: mdl-22848191

RESUMEN

In animals, odor qualities are represented as both spatial activity patterns of glomeruli and temporal patterns of synchronized oscillatory signals in the primary olfactory centers. By optical imaging of a voltage-sensitive dye (VSD) and intracellular recording from secondary olfactory interneurons, we examined possible neural correlates of the spatial and temporal odor representations in the primary olfactory center, the antennal lobe (AL), of the cockroach Periplaneta americana. Voltage-sensitive dye imaging revealed that all used odorants induced odor-specific temporal patterns of depolarizing potentials in specific combinations of anterior glomeruli of the AL. The depolarizing potentials evoked by different odorants were temporally synchronized across glomeruli and were termed "synchronized potentials." These observations suggest that odor qualities are represented by spatio-temporal activity patterns of the synchronized potentials across glomeruli. We also performed intracellular recordings and stainings from secondary olfactory interneurons, namely projection neurons and local interneurons. We analyzed the temporal structures of enanthic acid-induced action potentials of secondary olfactory interneurons using simultaneous paired intracellular recording from two given neurons. Our results indicated that the multiple local interneurons synchronously fired in response to the olfactory stimulus. In addition, all stained enanthic acid-responsive projection neurons exhibited dendritic arborizations within the glomeruli where the synchronized potentials were evoked. Since multiple local interneurons are known to synapse to a projection neuron in each glomerulus in the cockroach AL, converging inputs from local interneurons to the projection neurons appear to contribute the odorant specific spatio-temporal activity patterns of the synchronized potentials.

15.
Front Syst Neurosci ; 3: 19, 2010.
Artículo en Inglés | MEDLINE | ID: mdl-20130757

RESUMEN

The afferents of the Johnston's organ (JO) in the honeybee brain send their axons to three distinct areas, the dorsal lobe, the dorsal subesophageal ganglion (DL-dSEG), and the posterior protocerebral lobe (PPL), suggesting that vibratory signals detected by the JO are processed differentially in these primary sensory centers. The morphological and physiological characteristics of interneurons arborizing in these areas were studied by intracellular recording and staining. DL-Int-1 and DL-Int-2 have dense arborizations in the DL-dSEG and respond to vibratory stimulation applied to the JO in either tonic excitatory, on-off-phasic excitatory, or tonic inhibitory patterns. PPL-D-1 has dense arborizations in the PPL, sends axons into the ventral nerve cord (VNC), and responds to vibratory stimulation and olfactory stimulation simultaneously applied to the antennae in long-lasting excitatory pattern. These results show that there are at least two parallel pathways for vibration processing through the DL-dSEG and the PPL. In this study, Honeybee Standard Brain was used as the common reference, and the morphology of two types of interneurons (DL-Int-1 and DL-Int-2) and JO afferents was merged into the standard brain based on the boundary of several neuropiles, greatly supporting the understanding of the spatial relationship between these identified neurons and JO afferents. The visualization of the region where the JO afferents are closely appositioned to these DL interneurons demonstrated the difference in putative synaptic regions between the JO afferents and these DL interneurons (DL-Int-1 and DL-Int-2) in the DL. The neural circuits related to the vibration-processing interneurons are discussed.

16.
J Insect Physiol ; 56(3): 236-46, 2010 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-19852967

RESUMEN

Bristles along the wing margins (wm-bristles) of the silkworm moth, Bombyx mori, were studied morphologically and electrophysiologically. The male moth has ca. 50 wm-bristles on each forewing and hindwing. Scanning electron microscopy revealed that these wm-bristles are typical mechanosensilla. Leuco-methylene blue staining demonstrated that each wm-bristle has a single receptor neuron, which is also characteristic of the mechanosensillum. The receptor neuron responded to vibrating air currents but did not respond to a constant air current. The wm-bristles showed clear directional sensitivity to vibrating air currents. The wm-bristles were classified into two types, type I and type II, by their response patterns to sinusoidal movements of the bristle. The neuron in type I discharged bursting spikes immediately following stimulation onset and also discharged a single spike for each sinusoidal cycle for frequencies less than ca. 60 Hz. The neuron in type II only responded to vibrations over 40 Hz and, specifically at 75 Hz, discharged a single spike for each sinusoidal cycle throughout the stimulation period. These results suggest that the two types of wm-bristles are highly tuned in different ways to detect vibrations due to the wing beat. The roles of the wm-bristles in the wing beat are discussed.


Asunto(s)
Bombyx/fisiología , Alas de Animales/fisiología , Animales , Conducta Animal , Bombyx/anatomía & histología , Bombyx/química , Bombyx/ultraestructura , Electrofisiología , Masculino , Sensación , Células Receptoras Sensoriales/fisiología , Alas de Animales/anatomía & histología , Alas de Animales/química , Alas de Animales/ultraestructura
17.
J Comp Neurol ; 515(2): 145-60, 2009 Jul 10.
Artículo en Inglés | MEDLINE | ID: mdl-19412925

RESUMEN

Honeybees detect airborne vibration by means of Johnston's organ (JO), located in the pedicel of each antenna. In this study we identified two types of vibration-sensitive interneurons with arborizations in the primary sensory area of the JO, namely, the dorsal lobe-interneuron 1 (DL-Int-1) and dorsal lobe-interneuron 2 (DL-Int-2) using intracellular recordings combined with intracellular staining. For visualizing overlapping areas between the JO sensory terminals and the branches of these identified interneurons, the three-dimensional images of the individual neurons were registered into the standard atlas of the honeybee brain (Brandt et al. [2005] J Comp Neurol 492:1-19). Both DL-Int-1 and DL-Int-2 overlapped with the central terminal area of receptor neurons of the JO in the DL. For DL-Int-1 an on-off phasic excitation was elicited by vibrational stimuli applied to the JO when the spontaneous spike frequency was low, whereas tonic inhibition was induced when it was high. Moreover, current injection into a DL-Int-1 led to changes of the response pattern from on-off phasic excitation to tonic inhibition, in response to the vibratory stimulation. Although the vibration usually induced on-off phasic excitation in DL-Int-1, vibration applied immediately after odor stimulation induced tonic inhibition in it. DL-Int-2 responded to vibration stimuli applied to the JO by a tonic burst and were most sensitive to 265 Hz vibration, which is coincident with the strongest frequency of airborne vibrations arising during the waggle dance. These results suggest that DL-Int-1 and DL-Int-2 are related to coding of the duration of the vibration as sensed by the JO.


Asunto(s)
Comunicación Animal , Abejas/fisiología , Interneuronas/fisiología , Órganos de los Sentidos/fisiología , Vibración , Vías Aferentes/fisiología , Animales , Conducta Animal/fisiología , Dextranos , Ganglios de Invertebrados/fisiología , Procesamiento de Imagen Asistido por Computador , Interneuronas/ultraestructura , Microscopía Confocal , Odorantes , Estimulación Luminosa , Rodaminas , Olfato/fisiología
18.
J Comp Neurol ; 502(6): 1030-46, 2007 Jun 20.
Artículo en Inglés | MEDLINE | ID: mdl-17444491

RESUMEN

Johnston's organ (JO) in insects is a multicellular mechanosensory organ stimulated by movement of the distal part of the antenna. In honeybees JO is thought to be a primary sensor detecting air-particle movements caused by the waggling dance of conspecifics. In this study projection patterns of JO afferents within the brain were investigated. About 720 somata, distributed around the periphery of the second segment of the antenna (pedicel), were divided into three subgroups based on their soma location: an anterior group, a ventral group, and a dorsal group. These groups sent axons to different branches (N2 to N4) diverged from the antennal nerve. Dye injection into individual nerve branches revealed that all three groups of afferents, having fine collaterals in the dorsal lobe, sent axons broadly through tracts T6I, T6II, and T6III to terminate ipsilaterally in the medial posterior protocerebral lobe, the dorsal region of the subesophageal ganglion, and the central posterior protocerebral lobe, respectively. Within these termination fields only axon terminals running in T6I were characterized by thick processes with large varicosities. Differential staining using fluorescent dyes revealed that the axon terminals of the three groups were spatially segregated, especially in T6I, showing some degree of somatotopy. This spatial segregation was not observed in axon terminals running in other tracts. Our results show that projection patterns of JO afferents in the honeybee brain fundamentally resemble those in the dipteran brain. The possible roles of extensive termination fields of JO afferents in parallel processings of mechanosensory signals are discussed.


Asunto(s)
Vías Aferentes/ultraestructura , Abejas/anatomía & histología , Encéfalo/ultraestructura , Mecanorreceptores/fisiología , Neuronas Aferentes/ultraestructura , Vías Aferentes/fisiología , Animales , Abejas/fisiología , Conducta Animal/fisiología , Encéfalo/fisiología , Mapeo Encefálico , Ganglios de Invertebrados/fisiología , Ganglios de Invertebrados/ultraestructura , Microscopía Electrónica de Rastreo , Microscopía Electrónica de Transmisión , Neuronas Aferentes/fisiología , Terminales Presinápticos/fisiología , Terminales Presinápticos/ultraestructura , Conducta Social , Especificidad de la Especie
19.
Artículo en Inglés | MEDLINE | ID: mdl-16231186

RESUMEN

The frontal ganglion of the silkworm (Bombyx mori) gives rise to a visceral nerve, branches of which include a pair of anterior cardiac nerves and a pair of the posterior cardiac nerves. Forward-fill of the visceral nerve with dextran labeled with tetramethyl rhodamine shows the anterior cardiac nerves innervate the anterior region of the dorsal vessel. Back-fill of the anterior cardiac nerves with Co(2+) and Ni(2+) ions and the fluorescent dye reveals that the cell bodies of two motor neurons are located in the frontal ganglion. Injection of 5, 6-carboxyfluorescein into the cell body of an identified motor neuron shows that the neuron gives rise to an axon running to the visceral nerve. Unitary excitatory junctional potentials (EJPs) were recorded from a myocardial cell at the anterior end of the heart. They responded in a one-to-one manner to electrical stimuli applied to the visceral nerve, or to impulses generated by a depolarizing current injected into the cell body. EJPs induced by stimuli at higher than 0.5 Hz showed facilitation while those induced at higher than 2 Hz showed summation. Individual EJPs without summation, or a train of EJPs with summation, caused acceleration in the phase of posterograde heartbeat and heart reversal from anterograde heartbeat to posterograde heartbeat. It is likely that the innervation of the anterior region of the dorsal vessel by the motor neurons, through the anterior cardiac nerves is responsible for the control of heartbeat in Lepidoptera, at least in part.


Asunto(s)
Bombyx/fisiología , Ganglios Autónomos/fisiología , Frecuencia Cardíaca/fisiología , Corazón/inervación , Corazón/fisiología , Neuronas Motoras/fisiología , Red Nerviosa/fisiología , Potenciales de Acción/fisiología , Animales , Bombyx/citología , Potenciales Postsinápticos Excitadores/fisiología , Retroalimentación/fisiología , Ganglios Autónomos/citología , Larva/citología , Larva/fisiología , Neuronas Motoras/citología , Miocardio/citología , Red Nerviosa/citología
20.
J Exp Biol ; 207(Pt 4): 633-44, 2004 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-14718506

RESUMEN

We succeeded in clarifying the functional synaptic organization of the macroglomerular complex (MGC) of the male silkmoth Bombyx mori by optical recording with a voltage-sensitive dye. Sensory neurons in the antennae send their axons down either the medial nerve (MN) or lateral nerve (LN), depending on whether they are located on the medial or lateral flagella. Pheromone-sensitive fibers in the MN are biased towards the medial MGC, and those in the LN are biased towards the lateral MGC in the antennal lobe. In our optical recording experiments, the postsynaptic activities in the MGC were characterized by pharmacological analysis. Postsynaptic activities in the MGC were separated from sensory activities under Ca(2+)-free conditions, and subsequently the inhibitory postsynaptic activities were separated by applying bicuculline. We found that the inhibitory postsynaptic responses always preceded the postsynaptic responses separated under Ca(2+)-free conditions. Moreover, the excitatory postsynaptic activities were calculated by subtracting the inhibitory potentials from the posysynaptic activities separated under Ca(2+)-free conditions. When the MN was stimulated, the amplitudes of the excitatory postsynaptic activities in the central toroid, the medial toroid and the medial cumulus were selectively higher than those in the other areas. By contrast, when the LN was stimulated, excitatory postsynaptic activities were evoked in areas in both the lateral toroid and the lateral cumulus. The inhibitory postsynaptic activities were equally distributed throughout the whole MGC. These data suggest that there is a modular organization to the MGC such that information from the two main branches of the antenna is segregated to different sub-regions of the MGC glomeruli.


Asunto(s)
Bombyx/fisiología , Bulbo Olfatorio/anatomía & histología , Bulbo Olfatorio/fisiología , Sinapsis/fisiología , Vías Aferentes , Animales , Bicuculina/farmacología , Bombyx/anatomía & histología , Colorantes , Estimulación Eléctrica , Técnicas Histológicas , Neuronas Receptoras Olfatorias/fisiología , Sinapsis/efectos de los fármacos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...