Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Más filtros













Base de datos
Tipo de estudio
Intervalo de año de publicación
1.
Curr Microbiol ; 81(2): 60, 2024 Jan 11.
Artículo en Inglés | MEDLINE | ID: mdl-38206520

RESUMEN

A novel endophytic bacterium, designated strain BT6-1-3T, was isolated from the root nodules of a leguminous shrub named Sophora davidii (Franch.) Skeels, found growing wild in Yan'an, Shaanxi Province, China. Cells were Gram-staining-negative, non-motile, catalase-positive, oxidase-positive, and did not produce H2S. Strain BT6-1-3T grew at 15-40 °C (optimum 30 °C), at pH 6.0-10.0 (optimum pH 9.0), and with 0-1% (w/v) NaCl (optimum 0.5%). The quinone system was menaquinone 6. The major fatty acids present in BT6-1-3T were iso-C11:0, iso-C15:0, and C16:0. The G+C content of genomic DNA was 39.4 mol% by whole genome sequencing. According to the analysis of 16S rRNA gene sequence, the closest relative was Kaistella montana WG4 (nucleotide identity was 97.6%). The genome of strain BT6-1-3T was sequenced, and the genome similarity was calculated using average nucleotide identity and genome-to-genome distance analysis with the genomes of other strains of Kaistella. Both strongly supported that the strain BT6-1-3T belonged to the genus Kaistella as a representative of a new species. Based on phylogenetic analysis, chemotaxonomic data, and physiological and biochemical characteristics, strain BT6-1-3T represents a new species of the genus Kaistella and is named as Kaistella yananensis sp. nov. Type strain is BT6-1-3T (= NBRC 115452T = CGMCC 1.60032T).


Asunto(s)
Sophora , Filogenia , ARN Ribosómico 16S/genética , Bacterias , Ácidos Indolacéticos , Nucleótidos
2.
Front Microbiol ; 13: 1078208, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36532429

RESUMEN

Nodule-associated nitrogen-fixing microorganisms (diazotrophs) residing in legume root nodules, and they have the potential to enhance legume survival. However, the succession characteristics and mechanisms of leguminous diazotrophic communities remain largely unexplored. We performed a high-throughput nifH amplicon sequencing with samples of root nodules and soil in the three developmental phases (young nodules, active nodules and senescent nodules) of the Sophora davidii (Franch.) Skeels root nodules, aiming to investigate the dynamics of nodule-endophytic diazotrophs during three developmental phases of root nodules. The results demonstrated the presence of diverse diazotrophic bacteria and successional community shifting dominated by Mesorhizobium and Bradyrhizobium inside the nodule according to the nodule development. The relative abundance decreased for Mesorhizobium, while decreased first and then increased for Bradyrhizobium in nodule development from young to active to senescent. Additionally, strains M. amorphae BT-30 and B. diazoefficiens B-26 were isolated and selected to test the interaction between them in co-cultured conditions. Under co-culture conditions: B. diazoefficiens B-26 significantly inhibited the growth of M. amorphae BT-30. Intriguingly, growth of B. diazoefficiens B-26 was significantly promoted by co'culture with M. amorphae BT-30 and could utilize some carbon and nitrogen sources that M. amorphae BT-30 could not. Additionally, the composition of microbial community varied in root nodules, in rhizosphere and in bulk soil. Collectively, our study highlights that developmental phases of nodules and the host microhabitat were the key driving factors for the succession of nodule-associated diazotrophic community.

3.
Front Microbiol ; 13: 1044448, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36406435

RESUMEN

Microbial community succession during the enrichment of crude-oil-degrading bacteria was analyzed using Illumina high-throughput sequencing to guide bacterial isolation and construction of a bacterial consortium. Community change occurred in 6 days; the most abundant phylum changed from Proteobacteria to Actinobacteria; the most abundant genera were Dietzia and unspecified_Idiomarinaceae. Two crude oil-degrading strains, Rhodococcus sp. OS62-1 and Dietzia sp. OS33, and one weak-crude-oil-degrading strain, Pseudomonas sp. P35, were isolated. A consortium comprising Rhodococcus sp. OS62-1 and Pseudomonas sp. P35 showed the highest crude-oil-degrading efficiency, reaching 85.72 ± 3.21% within 7 days, over a wide pH range (5-11) and salinity (0-80 g·L-1). Consumption of saturated hydrocarbons, aromatic hydrocarbons, and resins was greater by the consortium than by a single strain, as was degradation of short-chain-alkanes (C13-C17) according to gas-chromatography. The bacterial consortium provides technical support for bioremediation of crude oil pollution.

4.
Artículo en Inglés | MEDLINE | ID: mdl-35834390

RESUMEN

An opaque, pink-coloured, gram-positive, aerobic bacteria (designated as FBM22-1T), was isolated from microbial fermentation bed material from a pig farm in northwestern China. Optimal growth occurred at 30-37 °C, pH 7.0 and with 0.5 % NaCl (w/v). The strain had nitrification and denitrification functions. Phylogenetic analysis based on 16S rRNA gene sequences revealed that the novel isolate belonged to the genus Rhodococcus. Strain FBM22-1T was closely related to Rhodococcus zopfii NBRC 100606T and Rhodococcus rhodochrous NBRC 16069T, with 16S rRNA gene sequence similarities of 97.9 and 97.7 %, respectively. The predominant menaquinone in strain FBM22-1T was MK-8(H2). The cellular fatty acids consisted primarily of C16 : 1ω7c and/or C16 : 1 ω6c, C16 : 0 and 10-methyl C18 : 0. The major polar lipids were diphosphatidylglycerol, phosphatidylglycerol, phosphatidylethanolamine and glycolipid. The G+C content of strain FBM22-1T was 68.64 mol%. Based on the phenotypic, phylogenetic and chemotaxonomic characterization results, in combination with low values of digital DNA-DNA hybridization between strain FBM22-1T and its closest neighbours, FBM22-1T represents a novel species of the genus Rhodococcus, for which the name Rhodococcus yananensis sp. nov. is proposed; the type strain is FBM22-1T (=KCTC 49502T=CCTCC AB2020275T).


Asunto(s)
Desnitrificación , Rhodococcus , Animales , Técnicas de Tipificación Bacteriana , Composición de Base , ADN Bacteriano/genética , Granjas , Ácidos Grasos/química , Fermentación , Fosfolípidos/química , Filogenia , ARN Ribosómico 16S/genética , Análisis de Secuencia de ADN , Porcinos
5.
Arch Microbiol ; 204(8): 529, 2022 Jul 28.
Artículo en Inglés | MEDLINE | ID: mdl-35900598

RESUMEN

A rod-shaped, Gram-negative staining strain, FBM22T, was isolated from a microbial fermentation bed substrate from a pig farm. Its colonies appeared yellow and were 0.5-1.2 mm in diameter. Cells were 0.3-0.5 µm wide, 0.5-0.83 µm long. Optimal growth occurred at 30 °C and pH 7.0-8.0; NaCl was not required for growth. The strain performed denitrification and nitrate reduction functions. And it could produce catalase. FBM22-1T utilized the following organic substrates for growth: tyrosine, glutamic acid, D-glucose, and galactose. The novel isolate could degrade 2-nitropropane as carbon and nitrogen source. The dominant respiratory quinone was Q-10. The major polar lipids were diphosphatidylglycerol, phosphatidylcholine and phosphatidylethanolamine. C18:1 ω7c, C16:1 ω7c and/ or C16:1 ω6c, and C14:0 2-OH were the major (≥ 8%) fatty acids. The G+C content was 56.8 mol%. FBM22T was found to be a member of the genus Sphingopyxis in the family Sphingomonadaceae of the class Alphaproteobacteria. It had the highest sequence similarity with the type strains Sphingopyxis terrae subsp. ummariensis UI2T (96.47%) and Sphingopyxis terrae subsp. terrae NBRC 15098T (96.40%). Furthermore, FBM22T had 18.7% and 18.4% relatedness (based on digital DNA-DNA hybridization) with its two relatives (S. terrae subsp. ummariensis UI2T and S. terrae subsp. terrae NBRC 15098T). The morphological, physiological, and genotypic differences identified in this study support the classification of FBM22T as a novel species within the genus Sphingopyxis, for which the name Sphingopyxis yananensis sp. nov. is proposed. The type strain is FBM22T (= KCTC 82290T = CCTC AB2020286T).


Asunto(s)
Sphingomonadaceae , Animales , Técnicas de Tipificación Bacteriana , ADN Bacteriano/genética , Ácidos Grasos/análisis , Fermentación , Nitroparafinas , Fosfolípidos/química , Filogenia , Propano/análogos & derivados , ARN Ribosómico 16S/genética , Análisis de Secuencia de ADN , Porcinos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA