Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 25
Filtrar
Más filtros













Base de datos
Intervalo de año de publicación
1.
J Immunol Methods ; 528: 113653, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38430991

RESUMEN

A fluorescent immunochromatographic test (FM-ICT) was developed for rapid detection of anti-Orientia tsutsugamushi antibodies in serum samples. The FM-ICT was constructed based on the dual-antigen sandwich method. Truncated 56 kDa outer membrane protein of O. tsutsugamushi strain SJ, was expressed in E. coli and mixed with those of Ptan and Gillam strains. A thin line of the protein mixture was precisely sprayed across a nitrocellulose membrane making this the "Test" line. Polyclonal antibodies (pAbs) to O.tsutsugamushi were sprayed in another line across the membrane making this the "Control" line. Fluorescent microspheres conjugated 56 kDa proteins reacting with sample serum will be captured on the "Test" line if the sample contains antibodies to O.tsutsugamushi. Several experimental parameters were optimized. After optimizing the reaction procedure, the results are visible, within 6 min, with the naked eye under ultraviolet light. The limit of detection (LOD) was determined to be 7.63 ng/mL with prepared polyclonal antibodies. No cross-reaction was observed with sera samples from other febrile diseases. In clinical evaluations, the strips showed 94.92% sensitivity (106/112) and 93.75% specificity (56/60). The FM-ICT we developed will provide a new tool for on-site diagnosis of scrub typhus.


Asunto(s)
Tifus por Ácaros , Humanos , Tifus por Ácaros/diagnóstico , Escherichia coli , Sensibilidad y Especificidad , Antígenos Bacterianos , Anticuerpos Antibacterianos
2.
Ticks Tick Borne Dis ; 15(3): 102328, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38432073

RESUMEN

Tick-borne Apicomplexan parasites pose a significant threat to both public health and animal husbandry. Identifying potential pathogenic parasites and gathering their epidemiological data are essential for prospectively preventing and controlling infections. In the present study, genomic DNA of ticks collected from two goat flocks (Goatflock1 and Goatflock2) and one dog group (Doggroup) were extracted and the 18S rRNA gene of Babesia/Theileria/Colpodella spp. was amplified by PCR and sequenced. Phylogenetic analysis was conducted based on the obtained sequences. The differences in pathogen positive rates between ticks of different groups were statistically analyzed using the Chi-square or continuity-adjusted Chi-square test. As a result, two pathogenic Theileria (T.) luwenshuni genotypes, one novel pathogenic Colpodella sp. HLJ genotype, and two potential novel Colpodella spp. (referred to as Colpodella sp. struthionis and Colpodella sp. yiyuansis in this study) were identified in the Haemaphysalis (H.) longicornis ticks. Ticks of Goatflock2 had a significantly higher positive rate of Colpodella spp. than those from Goatflock1 (χ2=92.10; P = 8.2 × 10-22) and Doggroup (χ2=42.34; P = 7.7 × 10-11), and a significantly higher positive rate of T. luwenshuni than Doggroup (χ2=5.38; P = 0.02). However, the positive rates of T. luwenshuni between Goatflock1 and Goatflock2 were not significantly different (χ2=2.02; P = 0.16), and so as the positive rates of both pathogens between Goatflock1 and Doggroup groups (P > 0.05). For either Colpodella spp. or T. luwenshuni, no significant difference was found in prevalence between male and female ticks. These findings underscore the potential importance of Colpodella spp. in domestic animal-attached ticks, as our study revealed two novel Colpodella spp. and identified Colpodella spp. in H. longicornis for the first time. The study also sheds light on goats' potential roles in the transmission of Colpodella spp. to ticks and provides crucial epidemiological data of pathogenic Theileria and Colpodella. These data may help physicians, veterinarians, and public health officers prepare suitable detection and treatment methods and develop prevention and control strategies.


Asunto(s)
Apicomplexa , Ixodidae , Theileria , Garrapatas , Femenino , Masculino , Animales , Perros , Garrapatas/parasitología , Haemaphysalis longicornis , Cabras/parasitología , Prevalencia , Filogenia , Ixodidae/parasitología , Theileria/genética , China/epidemiología
3.
BMC Public Health ; 23(1): 2231, 2023 11 13.
Artículo en Inglés | MEDLINE | ID: mdl-37957620

RESUMEN

BACKGROUND: The increasing number of pertussis cases worldwide over the past two decades has challenged healthcare workers, and the role of environmental factors and climate change cannot be ignored. The incidence of pertussis has increased dramatically in mainland China since 2015, developing into a serious public health problem. The association of meteorological factors on pertussis has attracted attention, but few studies have examined the impact of air pollutants on this respiratory disease. METHODS: In this study, we analyzed the relationship between outdoor air pollution and the pertussis incidence. The study period was from January 2013 to December 2018, and monthly air pollutant data and the monthly incidence of patients in 31 provinces of China were collected. Distributed lag nonlinear model (DLNM) analysis was used to estimate the associations between six air pollutants and monthly pertussis incidence in China. RESULTS: We found a correlation between elevated pertussis incidence and short-term high monthly CO2 and O3 exposure, with a 10 µg/m3 increase in NO2 and O3 being significantly associated with increased pertussis incidence, with RR values of 1.78 (95% CI: 1.29-2.46) and 1.51 (95% CI: 1.16-1.97) at a lag of 0 months, respectively. Moreover, PM2.5 and SO2 also played key roles in the risk of pertussis surged. These associations remain significant after adjusting for long-term trend, seasonality and collinearity. CONCLUSIONS: Overall, these data reinforce the evidence of a link between incidence and climate identified in regional and local studies. These findings also further support the hypothesis that air pollution is responsible for the global resurgence of pertussis. Based on this we suggest that public health workers should be encouraged to consider the risks of the environment when focusing on pertussis prevention and control.


Asunto(s)
Contaminantes Atmosféricos , Contaminación del Aire , Tos Ferina , Humanos , Incidencia , Tos Ferina/epidemiología , Exposición a Riesgos Ambientales/efectos adversos , Exposición a Riesgos Ambientales/análisis , Contaminación del Aire/efectos adversos , Contaminación del Aire/análisis , Contaminantes Atmosféricos/efectos adversos , Contaminantes Atmosféricos/análisis , China/epidemiología , Material Particulado/efectos adversos , Material Particulado/análisis , Dióxido de Nitrógeno
4.
BMC Public Health ; 23(1): 2171, 2023 11 06.
Artículo en Inglés | MEDLINE | ID: mdl-37932712

RESUMEN

OBJECTIVES: To outline 44 major infectious diseases in the post-SARS (severe acute respiratory syndrome) in China and describe their long-term trends and changes by age, sex, epidemic season, and province. BACKGROUND: After the outbreak of severe acute respiratory syndrome (SARS) in 2003, with the change of infectious disease prevention and control system and the improvement of residents' quality of life, the incidence and mortality of infectious diseases have undergone major changes. METHODS: The data of 44 major infectious diseases in China from 2004 to 2018 were obtained from the monthly analysis report of the China Information System for Disease Control and Prevention (CISDCP) and the Public Health Science Data Center. Joinpoint r regression models were used to examine trends in incidence and mortality for 44 major and important infectious diseases from 2004 to 2018. RESULTS: From 2004 to 2018, 20,105, 500, 772 patients (10, 306, 546, 523 males and 9, 798, 954, 249 females) were diagnosed with 44 major infectious diseases. The overall incidence of 44 infectious diseases increased significantly from 294.6 per 100,000 people in 2004 to 479.1 per 100,000 people in 2010, with 7.9% APC (95% CI 5.2% -10.7%, P < 0.001), then slowed, and then increased to 561.2 per 100,000 people in 2018, with 1.5% APC (-0.1%-3.2%, P = 0.070). The overall mortality rose significantly, from 0.49 to 1.13 per 100,000 people between 2004 and 2011, with an APC increase of 11.6% (7.7% -15.6%, P < 0.001), and then remained stable until 2018. Among these, the prevalence of vaccine-preventable diseases and gastrointestinal & enteroviral diseases remained high and increased year by year. Patients with zoonotic diseases have the greatest risk of death, while patients with sexually transmitted and blood-borne diseases have the greatest number of deaths. Incidence rates vary considerably across geographic regions. Western China has a disproportionate burden of infectious diseases compared with eastern regions. CONCLUSIONS: After the event of SARS in 2003, infectious disease preventing and controlling model has undergone major changes in China, and certain achievements have been made in this field. Although overall morbidity and case fatality rates are still rising, they have leveled off. In reducing the disproportionate disease burden in the western region, expanding vaccination programs, preventing further increases in rates of sexually transmitted diseases, renewing efforts for emerging and persistent infectious diseases, and addressing seasonal and unpredictable outbreaks (such as the COVID-19 pandemic), there are still remain many challenges.


Asunto(s)
Enfermedades Transmisibles , Pandemias , Masculino , Femenino , Humanos , Calidad de Vida , Enfermedades Transmisibles/epidemiología , Morbilidad , Incidencia , China/epidemiología
5.
BMC Vet Res ; 19(1): 253, 2023 Nov 29.
Artículo en Inglés | MEDLINE | ID: mdl-38031051

RESUMEN

BACKGROUND: Wenzhou virus (WENV), a member of the Mammarenavirus genus in the Arenaviridae family, has been detected in wild rodents from eight provinces in China, including Zhejiang, Shandong, Hainan, Xinjiang, Hunan, Guangdong, Yunnan, and Jiangxi provinces, and some countries from Southeast Asia. The IgG-antibodies of WENV have been detected in both healthy populations and patients with unknown fever and respiratory symptoms. However, the potential harmfulness of WENV to humans has been underestimated due to mild symptoms after infection, similar to respiratory diseases. Thus, it is imperative to enhance the surveillance of WENV in wild rodents, particularly Rattus norvegicus, and continuously monitor its prevalence. RESULTS: From 2017 to 2021, a total of 390 wild rodents were collected from six provinces in the eastern and southern coastal areas, containing nine species of rats. Samples of each tissue were collected, and PCR amplified for identification. Four R. norvegicus samples were detected to be WENV-positive. No genomic sequence of WENV was detected in Rattus flavipectus, Rattus losea, Suncus murinus, Apodemus agrarius, Mus musculus, Microtus fortis, Micromys minutus, and Niviventer niviventer from Jiangsu, Zhejiang, Fujian, Hainan, Guangdong and Guangxi provinces. Three genomic sequences were identified to be WENV by phylogenetic analysis. The full-length sequences of HAIKOU-40 were amplified in R. norvegicus from Hainan, which showed a close relationship to Wufeng/ WFS, sharing 84.5-89.4% homology at the nucleotide level and 91.6-98.9% homology at the amino acid level. Phylogenetic analysis revealed that HAIKOU-40 formed an Asia-specific cluster with all WENVs and Loie River mammarenavirus (LORV), provisionally named Asian ancestry. This cluster has diverged earlier from the remaining mammarenavirus. The sequences obtained in Xiamen, Fujian province showed more than 90% nucleotide identities with WENV, which may be a strain of WENV. Additionally, the sequence of Wuxi-87 which was a positive sequence detected in Wuxi, Jiangsu province exhibited 83% nucleotide identity with Lassa virus (LASV). Further efforts will be made to isolate and identify this virus strain, verify the relationship between Wuxi-87 and LASV, and confirm whether R. norvegicus is a new host of LASV. CONCLUSIONS: In this study, we conducted a systematic examination of the prevalence of WENV among rodents on the southeast coast of China. Additionally, we characterized the genome of a newly discovered WENV strain, that confirmed the role of R. norvegicus in the transmission of WENV. This highlights the importance of investigating the prevalence of WENV in both wild rodents and humans.


Asunto(s)
Arenavirus , Roedores , Ratones , Ratas , Humanos , Animales , Arenavirus/genética , Filogenia , China/epidemiología , Genómica , Nucleótidos
6.
Bioinorg Chem Appl ; 2023: 5898160, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37213220

RESUMEN

Insects act as vectors to carry a wide range of bacteria and viruses that can cause multiple vector-borne diseases in humans. Diseases such as dengue fever, epidemic encephalitis B, and epidemic typhus, which pose serious risks to humans, can be transmitted by insects. Due to the absence of effective vaccines for most arbovirus, insect control was the main strategy for vector-borne diseases control. However, the rise of drug resistance in the vectors brings a great challenge to the prevention and control of vector-borne diseases. Therefore, finding an eco-friendly method for vector control is essential to combat vector-borne diseases. Nanomaterials with the ability to resist insects and deliver drugs offer new opportunities to increase agent efficacy compared with traditional agents, and the application of nanoagents has expanded the field of vector-borne disease control. Up to now, the reviews of nanomaterials mainly focus on biomedicines, and the control of insect-borne diseases has always been a neglected field. In this study, we analyzed 425 works of the literature about different nanoparticles applied on vectors in PubMed around keywords, such as"nanoparticles against insect," "NPs against insect," and "metal nanoparticles against insect." Through these articles, we focus on the application and development of nanoparticles (NPs) for vector control, discussing the lethal mechanism of NPs to vectors, which can explore the prospect of applying nanotechnology in the prevention and control of vectors.

7.
Front Cell Infect Microbiol ; 13: 1115087, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-36923590

RESUMEN

Introduction: Viral hepatitis is a global public health problem, and China still faces great challenges to achieve the WHO goal of eliminating hepatitis. Methods: This study focused on hepatitis B and C, aiming to explore the long-term spatiotemporal heterogeneity of hepatitis B and C incidence in China from 2010 to 2018 and quantify the impact of socioeconomic factors on their risk through Bayesian spatiotemporal hierarchical model. Results: The results showed that the risk of hepatitis B and C had significant spatial and temporal heterogeneity. The risk of hepatitis B showed a slow downward trend, and the high-risk provinces were mainly distributed in the southeast and northwest regions, while the risk of hepatitis C had a clear growth trend, and the high-risk provinces were mainly distributed in the northern region. In addition, for hepatitis B, illiteracy and hepatitis C prevalence were the main contributing factors, while GDP per capita, illiteracy rate and hepatitis B prevalence were the main contributing factors to hepatitis C. Disussion: This study analyzed the spatial and temporal heterogeneity of hepatitis B and C and their contributing factors, which can serve as a basis for monitoring efforts. Meanwhile, the data provided by this study will contribute to the effective allocation of resources to eliminate viral hepatitis and the design of interventions at the provincial level.


Asunto(s)
Hepatitis B , Hepatitis C , Humanos , Teorema de Bayes , Hepatitis B/epidemiología , China/epidemiología , Hepatitis C/epidemiología , Incidencia , Hepacivirus
8.
Front Genet ; 14: 1174584, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-38259625

RESUMEN

Background: The invasive brownrat (Rattus norvegicus) and the Oriental rats (Rattus tanezumi) are common commensal murid that are important hosts for rodent-borne diseases in southeast Asia. Understanding their population structure and genetic diversity is essential to uncover their invasion biology and distribution dynamics that are essential for controlling rodent-borne diseases. Methods: TA total of 103 R. norvegicus and 85 R. tanezumi were collected from 13 to 9 coastal areas of six provincial monitoring sentinel sites, respectivelyto assess patterns in their microsatellite loci and their mitochondrial coxl gene region. Results: Eleven sampled populations of R. norvegicus were divided into two major clusters by region. The observed heterozygosity values of all regional populations were smaller than expected genetic diversity heterozygosity values and deviated from Hardy-Weinberg equilibrium Nine sample populations of R. tanezumi were divided into three clusters; two that included sample from Hainan and Fujian provinces, and one that included samples from the other provinces and cities. The genetic diversity of R. tanezumi was highest in samples from Jiangsu and Guangdong provinces. Conclusion: The data in this paper confirm the two invasive rodent species from the southeastern coastal region of China may have relied on maritime transport to spread from the southern region of China to the Yangtze River basin. R. tanezumi may then hanve migrated unidirectionally, along the southeastern provinces of China towards the north, while R. norvegicus spread in a complex and multidirectional manner in Hainan, Fujian, Zhejiang and Jiangsu Provinces of the country.

9.
Front Public Health ; 10: 1004462, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36530696

RESUMEN

Introduction: Scrub typhus, caused by Orientia tsutsugamushi, is a neglected tropical disease. The southern part of China is considered an important epidemic and conserved area of scrub typhus. Although a surveillance system has been established, the surveillance of scrub typhus is typically delayed or incomplete and cannot predict trends in morbidity. Internet search data intuitively expose the public's attention to certain diseases when used in the public health area, thus reflecting the prevalence of the diseases. Methods: In this study, based on the Internet search big data and historical scrub typhus incidence data in Yunnan Province of China, the autoregressive integrated moving average (ARIMA) model and ARIMA with external variables (ARIMAX) model were constructed and compared to predict the scrub typhus incidence. Results: The results showed that the ARIMAX model produced a better outcome than the ARIMA model evaluated by various indexes and comparisons with the actual data. Conclusions: The study demonstrates that Internet search big data can enhance the traditional surveillance system in monitoring and predicting the prevalence of scrub typhus and provides a potential tool for monitoring epidemic trends of scrub typhus and early warning of its outbreaks.


Asunto(s)
Tifus por Ácaros , Humanos , Tifus por Ácaros/epidemiología , Macrodatos , China/epidemiología , Brotes de Enfermedades , Análisis de Datos , Internet
10.
Front Public Health ; 10: 992555, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36339235

RESUMEN

Scrub typhus, caused by Orientia tsutsugamushi, is a serious public health problem in the Asia-Pacific region, threatening the health of more than one billion people. China is one of the countries with the most serious disease burden of scrub typhus. Previous epidemiological evidence indicated that meteorological factors may affect the incidence of scrub typhus, but there was limited evidence for the correlation between local natural environment factors dominated by meteorological factors and scrub typhus. This study aimed to evaluate the correlation between monthly scrub typhus incidence and meteorological factors in areas with high scrub typhus prevalence using a distributed lag non-linear model (DLNM). The monthly data on scrub typhus cases in ten provinces from 2006 to 2018 and meteorological parameters were obtained from the Public Health Science Data Center and the National Meteorological Data Sharing Center. The results of the single-variable and multiple-variable models showed a non-linear relationship between incidence and meteorological factors of mean temperature (Tmean), rainfall (RF), sunshine hours (SH), and relative humidity (RH). Taking the median of meteorological factors as the reference value, the relative risks (RRs) of monthly Tmean at 0°C, RH at 46%, and RF at 800 mm were most significant, with RRs of 2.28 (95% CI: 0.95-5.43), 1.71 (95% CI: 1.39-2.09), and 3.33 (95% CI: 1.89-5.86). In conclusion, relatively high temperature, high humidity, and favorable rainfall were associated with an increased risk of scrub typhus.


Asunto(s)
Orientia tsutsugamushi , Tifus por Ácaros , Humanos , Tifus por Ácaros/epidemiología , Incidencia , Conceptos Meteorológicos , China/epidemiología
11.
Sci Rep ; 12(1): 20037, 2022 11 21.
Artículo en Inglés | MEDLINE | ID: mdl-36414682

RESUMEN

Hemorrhagic fever with renal syndrome (HFRS), caused by hantavirus, is a serious public health problem in China. Despite intensive countermeasures including Patriotic Health Campaign, rodent control and vaccination in affected areas, HFRS is still a potential public health threat in China, with more than 10,000 new cases per year. Previous epidemiological evidence suggested that meteorological factors could influence HFRS incidence, but the studies were mainly limited to a specific city or region in China. This study aims to evaluate the association between monthly HFRS cases and meteorological change at the country level using a multivariate distributed lag nonlinear model (DLNM) from 2004 to 2018. The results from both univariate and multivariate models showed a non-linear cumulative relative risk relationship between meteorological factors (with a lag of 0-6 months) such as mean temperature (Tmean), precipitation, relative humidity (RH), sunshine hour (SH), wind speed (WS) and HFRS incidence. The risk for HFRS cases increased steeply as the Tmean between - 23 and 14.79 °C, SH between 179.4 and 278.4 h and RH remaining above 69% with 50-95 mm precipitation and 1.70-2.00 m/s WS. In conclusion, meteorological factors such as Tmean and RH showed delayed-effects on the increased risk of HFRS in the study and the lag varies across climate factors. Temperature with a lag of 6 months (RR = 3.05) and precipitation with a lag of 0 months (RR = 2.08) had the greatest impact on the incidence of HFRS.


Asunto(s)
Epidemias , Fiebre Hemorrágica con Síndrome Renal , Tiempo (Meteorología) , Humanos , China/epidemiología , Fiebre Hemorrágica con Síndrome Renal/epidemiología , Incidencia , Meteorología
12.
Exp Appl Acarol ; 88(1): 97-111, 2022 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-36097185

RESUMEN

Tick-borne diseases like Rickettsia, Anaplasma and Ehrlichia are widespread infectious zoonoses that threaten the health of both humans and animals worldwide. Ticks and their hosts, such as hedgehogs, can play a crucial role in transmitting tick-borne diseases and the cycle of Rickettsia. To investigate the presence and identity of Rickettsia in hedgehogs and hedgehog-attached ticks in Xuyi County, Southeast China, 114 ticks were collected from 45 hedgehogs captured totally. Via morphological and molecular methods, all these ticks were identified as two species: Haemaphysalis flava (110/114, 96.5%) and Haemaphysalis longicornis (4/114, 3.5%). Rickettsia spp. were genotypically characterized by PCR targeting rrs, gltA, ompA, ompB, and sca4 gene fragments. The prevalence of spotted fever group rickettsiae (SFGR) infection found in hedgehogs and ticks was 17.8% (8/45) and 78.1% (89/114), respectively. Phylogenetic analyses demonstrated that those Rickettsia spp. belong to two species: Rickettsia heilongjiangensis (R. heilongjiangensis XY-1) and a potential new species, Candidatus Rickettsia xuyiensis XY-2. The present study gave the first evidence of R. heilongjiangensis and Candidatus R. xuyiensis in ticks and hedgehogs of Southeast China. Our findings suggest that hedgehogs might be involved in the natural transmission cycle of Rickettsia species.


Asunto(s)
Ixodes , Ixodidae , Rickettsia , Rickettsiosis Exantemáticas , Enfermedades por Picaduras de Garrapatas , Humanos , Animales , Erizos , Filogenia , Rickettsia/genética , Rickettsiosis Exantemáticas/epidemiología , Rickettsiosis Exantemáticas/veterinaria , Rickettsiosis Exantemáticas/microbiología , Ixodidae/microbiología , China
13.
Front Cell Infect Microbiol ; 12: 954785, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35959365

RESUMEN

Background: Spotted fever group Rickettsia (SFGR), containing various pathogenic Rickettsia spp., poses remarkable negative influences to public health by causing various severe or mild diseases. Information regarding prevalence of SFGR in ticks in Jiangsu province, Eastern China, is still limited and needs urgent investigations. Methods: Hedgehog- and bovine-attached ticks were collected from Jiangsu province, Eastern China. DNA of individual ticks was extracted for nested polymerase chain reaction amplifications targeting gltA, 16S ribosomal RNA (rrs), ompA, ompB, and sca4 genes following with sequencing. SFGR-specific IgG antibodies in sera of local donators were evaluated using ELISA. Results: Overall, 144 (83.2%) of the 173 ticks from hedgehogs and 2 (1.2%) of the 168 ticks from bovine were positive for one of the three identified Rickettsia spp., with significant difference between the two groups (P = 3.6e-52). Candidatus Rickettsia principis (9; 5.2%) and R. heilongjiangensis (135; 78.0%) were detected in Haemaphysalis flava rather than in H. longicornis ticks from hedgehogs. R. heilongjiangensis (1; 0.6%) and Candidatus R. jingxinensis (or Candidatus R. longicornii) (1; 0.6%) were identified in H. longicornis and Rhipicephalus microplus ticks from bovine, respectively. Phylogenetic analysis indicated Candidatus R. jingxinensis belonged to R. japonica subgroup, whereas Candidatus R. principis belonged to a novel subgroup. Higher serological prevalence of spotted fever and SFGR-specific IgG antibody level in humans were observed around the investigated area than in urban areas, without significant difference. Conclusion: Candidatus R. principis and Candidatus R. jingxinensis were identified in Jiangsu province, Eastern China, and fully genetically characterized for the first time. The higher prevalence of SFGR in hedgehog-attached ticks as well as the higher SFGR-specific IgG antibody level and seropositive rate in humans around the investigated area suggested that more attention should be paid to SFGR. This pathogen is usually transmitted or harbored by wild animals and ticks. This study provides important epidemiological data for both physicians and public health officers in developing early prevention and control strategies against potential Rickettsia infections and in the preparation of suitable testing and treatment needs for rickettsiosis in the endemic areas.


Asunto(s)
Rickettsia , Rickettsiosis Exantemáticas , Garrapatas , Animales , Bovinos , China/epidemiología , Erizos , Humanos , Inmunoglobulina G , Filogenia , Prevalencia , Rickettsia/genética , Garrapatas/microbiología
14.
Microbiol Spectr ; 10(5): e0213822, 2022 10 26.
Artículo en Inglés | MEDLINE | ID: mdl-36000911

RESUMEN

The increasing awareness of emerging tickborne pathogens (TBPs) has inspired much research. In the present study, the coinfections of TBPs both in ticks and their wild hedgehog hosts in Jiangsu province, Eastern China were determined by metagenome next-generation sequencing and nested PCR. As a result, Rickettsia japonica (81.1%), novel Rickettsia sp. SFGR-1 (5.1%), Anaplasma bovis (12%), A. platys (6.3%), novel Ehrlichia spp. Ehr-1 (16%) and Ehr-2 (0.6%), E. ewingii-like strain (0.6%), Coxiella burnetii (10.9%), and a novel Coxiella-like endosymbiont (CLE) strain (61.1%) were detected in Haemaphysalis flava ticks. A. bovis (43.8%), Ehrlichia sp. Ehr-1 (83.3%), and C. burnetii (80%) were detected in Erinaceus amurensis hedgehogs. Coinfection rates with various TBPs were 71.5% and 83.3% in ticks and hedgehogs, respectively, both with double-pathogen/endosymbiont coinfection rates over 50%. We found the following. (i) Er. amurensis hedgehogs seem to contribute to the natural cycles of R. japonica, A. bovis, Ehrlichia sp., and C. burnetii and may be reservoirs of them except for R. japonica, and A. bovis is proved to infect hedgehogs for the first time. (ii) H. flava is proved to harbor various TBPs as a reservoir host, including CLE identified for the first time, which could inhibit coinfection of C. burnetii while promoting that of Rickettsia spp. in H. flava. (iii) Four novel TBP species were identified. This study provides useful epidemiological information crucial for assessing the potential infection risks to humans, thus benefiting the development of strategies to prevent and control tick-borne diseases. IMPORTANCE In the present study, we found the following. (i) Er. amurensis hedgehogs seem to contribute to the natural cycles of R. japonica, A. bovis, Ehrlichia sp., and C. burnetii and may be reservoirs of them except for R. japonica, and A. bovis is proved to infect hedgehogs for the first time. (ii) H. flava is proved to harbor various tickborne pathogens (TBPs) as a reservoir host, including Coxiella-like endosymbiont (CLE) identified for the first time, which could inhibit coinfection of C. burnetii while promoting that of Rickettsia spp. in H. flava. (iii) Four novel TBP species were identified. This study provides useful epidemiological information on TBPs harbored and transmitted by ticks and their hosts, for assessing the potential infection risks to humans, thus benefiting the developing strategies for tick-borne diseases prevention and control.


Asunto(s)
Coinfección , Parásitos , Rickettsia , Enfermedades por Picaduras de Garrapatas , Garrapatas , Animales , Humanos , Garrapatas/microbiología , Garrapatas/parasitología , Erizos/parasitología , Coinfección/epidemiología , Coinfección/veterinaria , Rickettsia/genética , Enfermedades por Picaduras de Garrapatas/epidemiología , Enfermedades por Picaduras de Garrapatas/veterinaria , Enfermedades por Picaduras de Garrapatas/microbiología , Ehrlichia/genética
15.
Front Microbiol ; 13: 913650, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35756069

RESUMEN

Background: Anaplasma spp., causative agents of anaplasmosis, pose significant a threat to public health and economic losses in livestock farming. Co-infections/co-existence of various Anaplasma spp. may facilitate pathogen interactions and the emergence of novel variants, represent potential dangers to public health and economic losses from livestock farming, and raise challenges of detection and diagnosis. The information regarding co-infection/co-existence of Anaplasma in their vector ticks and wild animals is limited and needs urgent investigation. Methods: Wild hedgehogs and ticks from hedgehogs and cattle were collected from Jiangsu province, Eastern China, and DNA was extracted from hedgehog organs and tick homogenates. Various genera of species-specific polymerase chain reaction (PCR) or nested PCR amplifications targeting 16S ribosomal RNA (rrs), msp4, or groEL gene coupled with sequencing were conducted to identify Anaplasma spp. Results: Anaplasma phagocytophilum (1, 0.6%), A. marginale (2, 1.2%), A. platys variants xyn10pt-1 (13, 7.7%), xyn21pt-2 (3, 1.8%), and xyn3pt-3 (3, 1.8%), A. bovis variant cwp72bo-1 (12, 7.1%), and a novel Candidatus Cryptoplasma sp. (1, 0.6%) were identified in 168 Haemaphysalis longicornis ticks from cattle. A. platys variant xyn10pt-1 (20, 11.4%) and A. bovis variants cwp72bo-1 (12, 6.9%) and cwp55-36bo-2 (1, 0.6%) were detected in 173 H. flava ticks from hedgehogs. However, only A. bovis variant cwp72bo-1 (15, 46.7%) was identified in 32 Erinaceus amurensis hedgehogs. Various co-existence combinations were found only in ticks. Conclusion: The co-existence of various Anaplasma spp. and variants in H. flava and H. longicornis was detected for the first time in the world. The high infection rate of A. bovis in hedgehogs and its moderate infection rate in their parasitic ticks suggest that Er. amurensis hedgehog could be an important reservoir of A. bovis, rather than A. platys. Horizontal transmission of Anaplasma spp. may exist among different tick species via their shared hosts in the investigated area. This study provided epidemiological data that could be crucial for strategy development for early warning, prevention, and control of potential Anaplasma infections.

16.
J Vet Med Sci ; 84(6): 847-854, 2022 Jun 17.
Artículo en Inglés | MEDLINE | ID: mdl-35584918

RESUMEN

Ticks are an important group of arthropod vectors. Ticks pose a profound risk to public health by transmitting many types of microorganisms that are human and animal pathogens. With the development of next-generation sequencing (NGS) technology and viral metagenomics, numerous novel viruses have been discovered in ticks and tick-related hosts. To fully understand the virus spectrum in ticks in the Zhoushan Archipelago of Zhejiang province in China, ticks were collected from Qushan Island, Zhoushan Island, and Daishan Island in the Zhoushan Archipelago in June 2016. NGS performed to investigate the diversity of tick-associated viruses identified 21 viral sequences. Twelve were pathogenic to humans and animals. Trough verification by polymerase chain reaction (PCR) revealed the existence of three tick-associated viruses with extensive homology with Dabieshan, MG22, and Odaw virus. Other NGS-detected sequences that could not be amplified by PCR were highly homologous (92-100%) with known pathogenic viruses that included hepatitis B virus, papillomavirus, and human mastadenovirus C. This is the first study to systematically apply high throughput sequencing technology to explore the spectrum of viruses carried by ticks in the Zhoushan Archipelago. The findings are fundamental knowledge of the diversity of tick-associated viruses in this region and will inform strategies to monitor and prevent the spread of tick-borne diseases.


Asunto(s)
Phlebovirus , Enfermedades por Picaduras de Garrapatas , Garrapatas , Virus , Animales , China/epidemiología , Filogenia , Enfermedades por Picaduras de Garrapatas/veterinaria , Viroma/genética , Virus/genética
17.
PLoS One ; 17(3): e0264859, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35239751

RESUMEN

BACKGROUND: Hantaviruses (HVs) are major zoonotic pathogens in China that cause hemorrhagic fever with renal syndrome (HFRS) posing a major threat to people's health. Hainan Province, an island located in Southeast China, is an ideal region for sea ports. The unique tropical monsoon climate in Hainan provides sufficient living conditions for rodents, which help spread HVs and other rodent-borne diseases. In the routine monitoring of hantavirus, there was no evidence that rodents in Hainan carried hantavirus. No patients infected with hantavirus were found in the past. However, the surveillance of HVs-carrying rodents covering the whole territory of Hainan has not stopped. METHODOLOGY/PRINCIPAL FINDINGS: For the monitoring of the prevalence of HVs in rodents and the search for theoretical reference for rodent control and HFRS prevention, a total of 60 rodents from 6 monitoring spots were trapped around main ports in Hainan between 2016 and 2019. HV positive samples were identified by a specific kit and sequenced. The data indicated that seven rodents (Rattus norvegicus) were positive for hantavirus with a positivity rate of 11.67%. Phylogenetic analysis suggested that the two complete sequence strains HN1 and HN4 in this research were highly similar to the sequence strains GZRn36 and GZRn148 isolated in Guangdong Province, and they located in the same phylogenetic tree branch which belongs to S2 subtype. Although the two partial sequences HT1 and HT2 isolated in Xisha Islands belong to S2 subtype according to the phylogenetic tree of L segment, they showed a great nucleotide difference with HN1 and HN4. We also found 13 amino acid variations compared with SEOV 80-39 and 6 amino acid mutations related to epitope, and the variations may reduce the effectiveness of the current HFRS vaccines used in humans. CONCLUSIONS/SIGNIFICANCE: The study indicated HVs carried by rodents found in Hainan Province may be transmitted from Guangdong Province through trading ports and carriage of goods by sea. So it is of great significance to strengthen the surveillance of rodents in port areas especially capture and eliminate rodents on ship. Timely elimination of host animals of hantavirus in port areas is necessary to prevent an outbreak of HVs disease.


Asunto(s)
Infecciones por Hantavirus , Fiebre Hemorrágica con Síndrome Renal , Orthohantavirus , Enfermedades de los Roedores , Aminoácidos/genética , Animales , China/epidemiología , Infecciones por Hantavirus/epidemiología , Infecciones por Hantavirus/veterinaria , Humanos , Filogenia , Ratas , Roedores
18.
Virus Res ; 308: 198653, 2022 01 15.
Artículo en Inglés | MEDLINE | ID: mdl-34896154

RESUMEN

Bats are important reservoirs for many kinds of emerging zoonotic viruses. In order to explore potential pathogens carried by bats and trace the source of adenovirus outbreaks on the southeastern coast of China, we took pharyngeal and anal swabs from a total of 552 bats (Rhinolophus pusillus) collected from various areas of Chinese southeastern coast. Adenoviruses were identified in 36 out of the 552 samples (6.5%) . Complete genome sequences of two adenovirus isolations from Vero E6 cells were obtained, which were further validated as identical strains via next-generation sequencing and were named Bat-Advcxc6. The cell culture inoculated with the two samples exhibited remarkable cytopathic changes. The full genome has 37,315 bp and owns 29 open reading frames. Phylogenetic analyses confirmed that Bat-Advcxc6 represented a novel bat adenovirus species in the genus Mastadenovirus. Transmission electron microgram showed clear virus particles. Bat-Advcxc6 shared similar characteristics of G + C contents with Bat mastadenovirus WIV11 (Bat mastadenovirus C) found in China in 2016, but differed from this serotype due to a <75% similarity with DNA polymerase amino acid sequences in WIV11. As it is a newly found adenovirus strain according to the international classification criteria, further analyses of virus dynamics, epithelial invasion, and immunization assays are required to explore its potential threats of cross-species transmission.


Asunto(s)
Infecciones por Adenoviridae , Quirópteros , Mastadenovirus , Adenoviridae/genética , Infecciones por Adenoviridae/epidemiología , Animales , China , Genoma Viral , Filogenia , Virulencia
19.
Sci Rep ; 10(1): 12731, 2020 07 29.
Artículo en Inglés | MEDLINE | ID: mdl-32728176

RESUMEN

Dengue fever is a mosquito-borne disease caused by the dengue virus. Aedes aegypti (Ae. Aegypti) is considered the primary vector of Dengue virus transmission in Yunnan Province, China. With increased urbanization, Ae. aegypti populations have significantly increased over the last 20 years. Despite all the efforts that were made for controlling the virus transmission, especially on border areas between Yunnan and Laos, Vietnam, and Myanmar (dengue-endemic areas), the epidemic has not yet been eradicated. Thus, further understanding of the genetic diversity, population structure, and invasive strategies of Ae. aegypti populations in the border areas was vital to uncover the vector invasion and distribution dynamic, and essential for controlling the infection. In this study, we analyzed genetic diversity and population structure of eight adult Ae. Aegypti populations collected along the border areas of Yunnan Province in 2017 and 2018. Nine nuclear microsatellite loci and mitochondrial DNA (mtDNA) sequences were used to achieve a better understanding of the genetic diversity and population structure. One hundred and fourteen alleles were found in total. The polymorphic information content value, together with the expected heterozygosity (He) and observed heterozygosity (Ho) values showed high genetic diversity in all mosquito populations. The clustering analysis based on Bayesian algorithm, the UPGMA and DAPC analysis revealed that all the eight Ae. aegypti populations can be divided into three genetic groups. Based on the mtDNA results, all Ae. aegypti individuals were divided into 11 haplotypes. The Ae. aegypti populations in the border areas of Yunnan Province presented with high genetic diversity, which might be ascribed to the continuous incursion of Ae. aegypti.


Asunto(s)
Aedes/clasificación , Dengue/prevención & control , Repeticiones de Microsatélite , Análisis de Secuencia de ADN/veterinaria , Aedes/genética , Aedes/virología , Animales , Teorema de Bayes , ADN Mitocondrial/genética , Enfermedades Endémicas/prevención & control , Variación Genética , Haplotipos , Control de Insectos , Laos , Mosquitos Vectores/genética , Mosquitos Vectores/virología , Mianmar , Filogenia , Vietnam
20.
J Vet Med Sci ; 82(8): 1226-1230, 2020 Aug 28.
Artículo en Inglés | MEDLINE | ID: mdl-32522895

RESUMEN

Dabieshan tick virus (DBV) belongs to Phlebovirus and its pathogenicity to human and animals is unknown. To investigate the presence of Dabieshan tick virus in Zhoushan, 353 ticks were collected from May 2018 to October 2019. The detection result showed that the average prevalence rate among these samples was 30.3% (107 positives out of 353 samples), which means DBVs are widely distributed in tick populations in Zhoushan of China. In a phylogenetic analysis based on the nucleotide sequences of the L and S segments of the virus (ZS-DBS-2018 tick virus) in the study, it clustered with Dabieshan tick virus (KM817666.1, KM817733.1) with a 97.1% and 99.6% nucleotide identity, respectively. Further studies involving virus isolation are required to characterize Dabieshan tick virus and to expand the geographical distribution of the sampled ticks.


Asunto(s)
Ixodidae/virología , Phlebovirus/clasificación , Phlebovirus/aislamiento & purificación , Animales , China , Ixodidae/clasificación , Ixodidae/genética , Phlebovirus/genética , Filogenia , Prevalencia , ARN Ribosómico 16S , Análisis de Secuencia de ARN
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA