Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros













Base de datos
Intervalo de año de publicación
1.
Physiol Mol Biol Plants ; 27(7): 1455-1468, 2021 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-34366589

RESUMEN

DNA methylation is the most important epigenetic modification involved in many essential biological processes. MET1 is one of DNA methyltransferases that affect the level of methylation in the entire genome. To explore the effect of MET1 gene silencing on gene expression profile of Chrysanthemum × morifolium 'Zijingling'. The stem section and leaves at the young stage were taken for transcriptome sequencing. MET1-RNAi leaves had 8 differentially expressed genes while 156 differentially expressed genes were observed in MET1-RNAi stem compared with control leaves and stem. These genes encode many key proteins in plant biological processes, such as transcription factors, signal transduction mechanisms, secondary metabolite synthesis, transport and catabolism and interaction. In general, 34.58% of the differentially expressed genes in leaves and stems were affected by the reduction of the MET1 gene. The differentially expressed genes in stem and leaves of transgenic plants went through significant changes. We found adequate amount of candidate genes associated with flowering, however, the number of genes with significant differences between transgenic and control lines was not too high. Several flowering related genes were screened out for gene expression verification and all of them were obseved as consistent with transcriptome data. These candidate genes may play important role in flowering variation of chrysanthemum. This study reveals the mechanism of CmMET1 interference on the growth and development of chrysanthemum at the transcriptional level, which provides the basis for further research on the epigenetic regulation mechanism in flower induction and development. SUPPLEMENTARY INFORMATION: The online version contains supplementary material available at 10.1007/s12298-021-01022-1.

2.
Mol Psychiatry ; 26(8): 3956-3969, 2021 08.
Artículo en Inglés | MEDLINE | ID: mdl-31772302

RESUMEN

Social interaction and communication are evolutionary conserved behaviours that are developed in mammals to establish partner cognition. Deficit in sociability has been represented in human patients and animal models of neurodevelopmental disorders, which are connected with genetic variants of synaptic glutamate receptors and associated PDZ-binding proteins. However, it remains elusive how these key proteins are specialized in the cellular level for the initial social behaviour during postnatal developmental stage. Here we identify a hippocampal CA3 specifically expressed PDZ scaffold protein Lnx1 required for initial social behaviour. Through gene targeting we find that Lnx1 deficiency led to a hippocampal subregional disorder in neuronal activity and social memory impairments for partner discrimination observed in juvenile mice which also show cognitive defects in adult stage. We further demonstrate that Lnx1 deletion causes NMDA receptor (NMDAR) hypofunction and this is attributable to decreased GluN2B expression in PSD compartment and disruption of the Lnx1-NMDAR-EphB2 complex. Specific restoration of Lnx1 or EphB2 protein in the CA3 area of Lnx1-/- mice rescues the defective synaptic function and social memory. These findings thus reveal crucial roles of postsynaptic NMDAR multiprotein complex that regulates the formation of initial social memory during the adolescent period.


Asunto(s)
Región CA3 Hipocampal/fisiología , Memoria , Receptores de N-Metil-D-Aspartato , Conducta Social , Ubiquitina-Proteína Ligasas , Animales , Trastornos de la Memoria/genética , Ratones , Receptores de N-Metil-D-Aspartato/genética , Receptores de N-Metil-D-Aspartato/metabolismo , Transducción de Señal , Ubiquitina-Proteína Ligasas/metabolismo
3.
Transl Neurodegener ; 9(1): 18, 2020 05 12.
Artículo en Inglés | MEDLINE | ID: mdl-32398165

RESUMEN

BACKGROUND: Neuropsychiatric symptoms (NPS) such as depression, anxiety, apathy, and irritability occur in prodromal phases of clinical Alzheimer's disease (AD), which might be an increased risk for later developing AD. Here we treated young APP/PS1 AD model mice prophylactically with serotonin-selective re-uptake inhibitor (SSRI) paroxetine and investigated the protective role of anti-depressant agent in emotional abnormalities and cognitive defects during disease progress. METHODS: To investigate the protective role of paroxetine in emotional abnormalities and cognitive defects during disease progress, we performed emotional behaviors of 3 months old APP/PS1 mouse following oral administration of paroxetine prophylactically starting at 1 month of age. Next, we tested the cognitive, biochemical and pathological, effects of long term administration of paroxetine at 6 months old. RESULTS: Our results showed that AD mice displayed emotional dysfunction in the early stage. Prophylactic administration of paroxetine ameliorated the initial emotional abnormalities and preserved the eventual memory function in AD mice. CONCLUSION: Our data indicate that prophylactic administration of paroxetine ameliorates the emotional dysfunction and memory deficit in AD mice. These neuroprotective effects are attributable to functional restoration of glutamate receptor (GluN2A) in AD mice.


Asunto(s)
Síntomas Afectivos/tratamiento farmacológico , Enfermedad de Alzheimer/tratamiento farmacológico , Trastornos de la Memoria/tratamiento farmacológico , Fármacos Neuroprotectores/uso terapéutico , Paroxetina/uso terapéutico , Síntomas Prodrómicos , Síntomas Afectivos/genética , Síntomas Afectivos/metabolismo , Enfermedad de Alzheimer/genética , Enfermedad de Alzheimer/metabolismo , Precursor de Proteína beta-Amiloide/genética , Animales , Trastornos de la Memoria/genética , Trastornos de la Memoria/metabolismo , Ratones , Ratones Transgénicos , Fármacos Neuroprotectores/metabolismo , Paroxetina/metabolismo , Presenilina-1/genética , Receptores de N-Metil-D-Aspartato/metabolismo , Inhibidores Selectivos de la Recaptación de Serotonina/metabolismo , Inhibidores Selectivos de la Recaptación de Serotonina/uso terapéutico , Factores de Tiempo
4.
J Neurooncol ; 137(2): 395-407, 2018 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-29294230

RESUMEN

Previous study revealed that higher expression of transforming growth factor beta induced (TGFBI) is correlated to poorer cancer-specific survival and higher proportion of tumor necrosis and Fuhrman grades III and IV in clear cell renal cell carcinomas. However, the relationships between TGFBI expression and malignant phenotypes of gliomas remain unclear. We downloaded and analyzed data from seven GEO datasets (GSE68848, GSE4290, GSE13041, GSE4271, GSE83300, GSE34824 and GSE84010), the TCGA database and the REMBRANDT database to investigate whether TGFBI could be a biomarker of glioma. From microarray data (GSE68848, GSE4290) and RNA-seq data (TCGA), TGFBI expression levels were observed to correlate positively with pathological grade, and TGFBI expression levels were significantly higher in gliomas than in normal brain tissues. Furthermore, in GSE13041, GSE4271 and the TCGA cohort, TGFBI expression in the mesenchymal (Mes) subtype high-grade glioma (HGG) was significantly higher than that in the proneural subtype. Kaplan-Meier survival analysis of GBM patients in the GSE83300 dataset, REMBRANDT and TCGA cohort revealed that patients in the top 50% TGFBI expression group survived for markedly shorter periods than those in the bottom 50%. Analysis of grade III gliomas showed that the median survival time was significantly shorter in the TGFBI high expression group than in the TGFBI low expression group. In addition, we found that TGFBI expression levels might relate to several classical molecular characterizations of glioma, such as, IDH mutation, TP53 mutation, EGFR amplification, etc. These results suggest that TGFBI expression positively correlates with glioma pathological grades and that TGFBI is a potential signature gene for Mes subtype HGG and a potential prognostic molecule.


Asunto(s)
Neoplasias Encefálicas/genética , Neoplasias Encefálicas/metabolismo , Glioma/genética , Glioma/metabolismo , Factor de Crecimiento Transformador beta1/genética , Factor de Crecimiento Transformador beta1/metabolismo , Biomarcadores de Tumor/genética , Biomarcadores de Tumor/metabolismo , Encéfalo/metabolismo , Encéfalo/patología , Neoplasias Encefálicas/mortalidad , Neoplasias Encefálicas/patología , Estudios de Cohortes , Regulación Neoplásica de la Expresión Génica , Glioma/mortalidad , Glioma/patología , Humanos , Análisis por Micromatrices , Necrosis/genética , Necrosis/metabolismo , Clasificación del Tumor
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA