Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros













Base de datos
Intervalo de año de publicación
1.
JMIR Med Inform ; 11: e48072, 2023 Jun 27.
Artículo en Inglés | MEDLINE | ID: mdl-37368483

RESUMEN

BACKGROUND: A patient's family history (FH) information significantly influences downstream clinical care. Despite this importance, there is no standardized method to capture FH information in electronic health records and a substantial portion of FH information is frequently embedded in clinical notes. This renders FH information difficult to use in downstream data analytics or clinical decision support applications. To address this issue, a natural language processing system capable of extracting and normalizing FH information can be used. OBJECTIVE: In this study, we aimed to construct an FH lexical resource for information extraction and normalization. METHODS: We exploited a transformer-based method to construct an FH lexical resource leveraging a corpus consisting of clinical notes generated as part of primary care. The usability of the lexicon was demonstrated through the development of a rule-based FH system that extracts FH entities and relations as specified in previous FH challenges. We also experimented with a deep learning-based FH system for FH information extraction. Previous FH challenge data sets were used for evaluation. RESULTS: The resulting lexicon contains 33,603 lexicon entries normalized to 6408 concept unique identifiers of the Unified Medical Language System and 15,126 codes of the Systematized Nomenclature of Medicine Clinical Terms, with an average number of 5.4 variants per concept. The performance evaluation demonstrated that the rule-based FH system achieved reasonable performance. The combination of the rule-based FH system with a state-of-the-art deep learning-based FH system can improve the recall of FH information evaluated using the BioCreative/N2C2 FH challenge data set, with the F1 score varied but comparable. CONCLUSIONS: The resulting lexicon and rule-based FH system are freely available through the Open Health Natural Language Processing GitHub.

2.
IEEE Int Conf Healthc Inform ; 2023: 610-618, 2023 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38274947

RESUMEN

End-to-end relation extraction (E2ERE) is an important task in information extraction, more so for biomedicine as scientific literature continues to grow exponentially. E2ERE typically involves identifying entities (or named entity recognition (NER)) and associated relations, while most RE tasks simply assume that the entities are provided upfront and end up performing relation classification. E2ERE is inherently more difficult than RE alone given the potential snowball effect of errors from NER leading to more errors in RE. A complex dataset in biomedical E2ERE is the ChemProt dataset (BioCreative VI, 2017) that identifies relations between chemical compounds and genes/proteins in scientific literature. ChemProt is included in all recent biomedical natural language processing benchmarks including BLUE, BLURB, and BigBio. However, its treatment in these benchmarks and in other separate efforts is typically not end-to-end, with few exceptions. In this effort, we employ a span-based pipeline approach to produce a new state-of-the-art E2ERE performance on the ChemProt dataset, resulting in > 4% improvement in F1-score over the prior best effort. Our results indicate that a straightforward fine-grained tokenization scheme helps span-based approaches excel in E2ERE, especially with regards to handling complex named entities. Our error analysis also identifies a few key failure modes in E2ERE for ChemProt.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA