Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 48
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
Nat Commun ; 15(1): 4531, 2024 Jun 12.
Artículo en Inglés | MEDLINE | ID: mdl-38866749

RESUMEN

Individuals with autism spectrum disorder (ASD) have a higher prevalence of social memory impairment. A series of our previous studies revealed that hippocampal ventral CA1 (vCA1) neurons possess social memory engram and that the neurophysiological representation of social memory in the vCA1 neurons is disrupted in ASD-associated Shank3 knockout mice. However, whether the dysfunction of Shank3 in vCA1 causes the social memory impairment observed in ASD remains unclear. In this study, we found that vCA1-specific Shank3 conditional knockout (cKO) by the adeno-associated virus (AAV)- or specialized extracellular vesicle (EV)- mediated in vivo gene editing was sufficient to recapitulate the social memory impairment in male mice. Furthermore, the utilization of EV-mediated Shank3-cKO allowed us to quantitatively examine the role of Shank3 in social memory. Our results suggested that there is a certain threshold for the proportion of Shank3-cKO neurons required for social memory disruption. Thus, our study provides insight into the population coding of social memory in vCA1, as well as the pathological mechanisms underlying social memory impairment in ASD.


Asunto(s)
Trastorno del Espectro Autista , Región CA1 Hipocampal , Edición Génica , Memoria , Ratones Noqueados , Proteínas del Tejido Nervioso , Conducta Social , Animales , Masculino , Proteínas del Tejido Nervioso/genética , Proteínas del Tejido Nervioso/metabolismo , Región CA1 Hipocampal/metabolismo , Trastorno del Espectro Autista/genética , Trastorno del Espectro Autista/metabolismo , Ratones , Memoria/fisiología , Neuronas/metabolismo , Dependovirus/genética , Proteínas de Microfilamentos/genética , Proteínas de Microfilamentos/metabolismo , Trastornos de la Memoria/genética , Trastornos de la Memoria/metabolismo , Trastornos de la Memoria/fisiopatología , Ratones Endogámicos C57BL
2.
Cancer Sci ; 115(6): 1924-1935, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38549229

RESUMEN

In childhood acute lymphoblastic leukemia (ALL), TP53 gene mutation is associated with chemoresistance in a certain population of relapsed cases. To directly verify the association of TP53 gene mutation with chemoresistance of relapsed childhood ALL cases and improve their prognosis, the development of appropriate human leukemia models having TP53 mutation in the intrinsic gene is required. Here, we sought to introduce R248Q hotspot mutation into the intrinsic TP53 gene in an ALL cell line, 697, by applying a prime editing (PE) system, which is a versatile genome editing technology. The PE2 system uses an artificial fusion of nickase Cas9 and reverse-transcriptase to directly place new genetic information into a target site through a reverse transcriptase template in the prime editing guide RNA (pegRNA). Moreover, in the advanced PE3b system, single guide RNA (sgRNA) matching the edited sequence is also introduced to improve editing efficiency. The initially obtained MDM2 inhibitor-resistant PE3b-transfected subline revealed disrupted p53 transactivation activity, reduced p53 target gene expression, and acquired resistance to chemotherapeutic agents and irradiation. Although the majority of the subline acquired the designed R248Q and adjacent silent mutations, the insertion of the palindromic sequence in the scaffold hairpin structure of pegRNA and the overlap of the original genomic DNA sequence were frequently observed. Targeted next-generation sequencing reconfirmed frequent edit errors in both PE2 and PE3b-transfected 697 cells, and it revealed frequent successful edits in HEK293T cells. These observations suggest a requirement for further modification of the PE2 and PE3b systems for accurate editing in leukemic cells.


Asunto(s)
Edición Génica , Mutación , Leucemia-Linfoma Linfoblástico de Células Precursoras , Proteína p53 Supresora de Tumor , Humanos , Proteína p53 Supresora de Tumor/genética , Edición Génica/métodos , Leucemia-Linfoma Linfoblástico de Células Precursoras/genética , Leucemia-Linfoma Linfoblástico de Células Precursoras/patología , Leucemia-Linfoma Linfoblástico de Células Precursoras/terapia , Línea Celular Tumoral , Resistencia a Antineoplásicos/genética , Sistemas CRISPR-Cas/genética , ARN Guía de Sistemas CRISPR-Cas/genética , Proteínas Proto-Oncogénicas c-mdm2/genética
3.
Nat Neurosci ; 27(3): 561-572, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38243089

RESUMEN

Episodic memories are encoded by experience-activated neuronal ensembles that remain necessary and sufficient for recall. However, the temporal evolution of memory engrams after initial encoding is unclear. In this study, we employed computational and experimental approaches to examine how the neural composition and selectivity of engrams change with memory consolidation. Our spiking neural network model yielded testable predictions: memories transition from unselective to selective as neurons drop out of and drop into engrams; inhibitory activity during recall is essential for memory selectivity; and inhibitory synaptic plasticity during memory consolidation is critical for engrams to become selective. Using activity-dependent labeling, longitudinal calcium imaging and a combination of optogenetic and chemogenetic manipulations in mouse dentate gyrus, we conducted contextual fear conditioning experiments that supported our model's predictions. Our results reveal that memory engrams are dynamic and that changes in engram composition mediated by inhibitory plasticity are crucial for the emergence of memory selectivity.


Asunto(s)
Consolidación de la Memoria , Memoria Episódica , Ratones , Animales , Consolidación de la Memoria/fisiología , Recuerdo Mental/fisiología , Neuronas/fisiología , Miedo/fisiología
4.
J Neurochem ; 165(2): 211-229, 2023 04.
Artículo en Inglés | MEDLINE | ID: mdl-36807153

RESUMEN

Astrotactin2 (ASTN2) regulates neuronal migration and synaptic strength through the trafficking and degradation of surface proteins. Deletion of ASTN2 in copy number variants has been identified in patients with schizophrenia, bipolar disorder, and autism spectrum disorder in copy number variant (CNV) analysis. Disruption of ASTN2 is a risk factor for these neurodevelopmental disorders, including schizophrenia, bipolar disorder, autism spectrum disorder, and attention deficit hyperactivity disorder. However, the importance of ASTN2 in physiological functions remains poorly understood. To elucidate the physiological functions of ASTN2, we investigated whether deficiency of ASTN2 affects cognitive and/or emotional behaviors and neurotransmissions using ASTN2-deficient mice. Astn2 knockout (KO) mice produced by CRISPR/Cas9 technique showed no obvious differences in physical characteristics and circadian rhythm. Astn2 KO mice showed increased exploratory activity in a novel environment, social behavior and impulsivity, or decreased despair-, anxiety-like behaviors and exploratory preference for the novel object. Some behavioral abnormalities, such as increased exploratory activity and impulsivity, or decreased exploratory preference were specifically attenuated by risperidone, but not by haloperidol. While, the both drugs did not affect any emotion-related behavioral abnormalities in Astn2 KO mice. Dopamine contents were decreased in the striatum, and serotonin or dopamine turnover were increased in the striatum, nucleus accumbens, and amygdala of Astn2 KO mice. In morphological analyses, thinning of neural cell layers in the hippocampus, reduction of neural cell bodies in the prefrontal cortex, and decrease in spine density and PSD95 protein in both tissues were observed in Astn2 KO mice. The present findings suggest that ASTN2 deficiency develops some emotional or cognitive impairments related to monoaminergic dysfunctions and abnormal neuronal morphogenesis with shrinkage of neuronal soma. ASTN2 protein may contribute to the pathogenic mechanism and symptom onset of mental disorders.


Asunto(s)
Trastorno del Espectro Autista , Dopamina , Animales , Ratones , Cognición , Dopamina/metabolismo , Emociones , Glicoproteínas/metabolismo , Ratones Noqueados , Morfogénesis
5.
Nat Neurosci ; 25(11): 1458-1469, 2022 11.
Artículo en Inglés | MEDLINE | ID: mdl-36319770

RESUMEN

Synaptic pruning is a fundamental process of neuronal circuit refinement in learning and memory. Accumulating evidence suggests that glia participates in sculpting the neuronal circuits through synapse engulfment. However, whether glial involvement in synaptic pruning has a role in memory formation remains elusive. Using newly developed phagocytosis reporter mice and three-dimensional ultrastructural characterization, we found that synaptic engulfment by cerebellar Bergmann glia (BG) frequently occurred upon cerebellum-dependent motor learning in mice. We observed increases in pre- and postsynaptic nibbling by BG along with a reduction in spine volume after learning. Pharmacological blockade of engulfment with Annexin V inhibited both the spine volume reduction and overnight improvement of motor adaptation. These results indicate that BG contribute to the refinement of the mature cerebellar cortical circuit through synaptic engulfment during motor learning.


Asunto(s)
Neuroglía , Sinapsis , Ratones , Animales , Neuroglía/fisiología , Sinapsis/fisiología , Neuronas/fisiología , Cerebelo/fisiología , Plasticidad Neuronal
6.
eNeuro ; 9(5)2022.
Artículo en Inglés | MEDLINE | ID: mdl-35977823

RESUMEN

Fragile X syndrome (FXS) is a leading monogenic cause of intellectual disability and autism spectrum disorders, spurring decades of intense research and a multitude of mouse models. So far, these models do not recapitulate the genetic underpinning of classical FXS-CGG repeat-induced methylation of the Fmr1 locus-and their findings have failed to translate into the clinic. We sought to answer whether this disparity was because of low repeat length and generated a novel mouse line with 341 repeats, Fmr1hs341 , which is the largest allele in mice reported to date. This repeat length is significantly longer than the 200 repeats generally required for methylation of the repeat tract and promoter region in FXS patients, which leads to silencing of the FMR1 gene. Bisulfite sequencing fails to detect the robust methylation expected of FXS in Fmr1hs341 mice. Quantitative real-time PCR and Western blotting results also do not resemble FXS and instead produce a biochemical profile consistent with the fragile X-associated premutation disorders. These findings suggest that repeat length is unlikely to be the core determinant preventing methylation in mice, and other organisms phylogenetically closer to humans may be required to effectively model FXS.


Asunto(s)
Proteína de la Discapacidad Intelectual del Síndrome del Cromosoma X Frágil , Síndrome del Cromosoma X Frágil , Animales , Metilación de ADN , Modelos Animales de Enfermedad , Proteína de la Discapacidad Intelectual del Síndrome del Cromosoma X Frágil/genética , Proteína de la Discapacidad Intelectual del Síndrome del Cromosoma X Frágil/metabolismo , Síndrome del Cromosoma X Frágil/genética , Humanos , Ratones , Expansión de Repetición de Trinucleótido/genética
7.
Nature ; 607(7918): 321-329, 2022 07.
Artículo en Inglés | MEDLINE | ID: mdl-35676479

RESUMEN

Although bradykinesia, tremor and rigidity are the hallmark motor defects in patients with Parkinson's disease (PD), patients also experience motor learning impairments and non-motor symptoms such as depression1. The neural circuit basis for these different symptoms of PD are not well understood. Although current treatments are effective for locomotion deficits in PD2,3, therapeutic strategies targeting motor learning deficits and non-motor symptoms are lacking4-6. Here we found that distinct parafascicular (PF) thalamic subpopulations project to caudate putamen (CPu), subthalamic nucleus (STN) and nucleus accumbens (NAc). Whereas PF→CPu and PF→STN circuits are critical for locomotion and motor learning, respectively, inhibition of the PF→NAc circuit induced a depression-like state. Whereas chemogenetically manipulating CPu-projecting PF neurons led to a long-term restoration of locomotion, optogenetic long-term potentiation (LTP) at PF→STN synapses restored motor learning behaviour in an acute mouse model of PD. Furthermore, activation of NAc-projecting PF neurons rescued depression-like phenotypes. Further, we identified nicotinic acetylcholine receptors capable of modulating PF circuits to rescue different PD phenotypes. Thus, targeting PF thalamic circuits may be an effective strategy for treating motor and non-motor deficits in PD.


Asunto(s)
Afecto , Destreza Motora , Vías Nerviosas , Enfermedad de Parkinson , Tálamo , Animales , Modelos Animales de Enfermedad , Aprendizaje , Locomoción , Potenciación a Largo Plazo , Ratones , Neuronas/fisiología , Núcleo Accumbens , Optogenética , Enfermedad de Parkinson/fisiopatología , Enfermedad de Parkinson/psicología , Enfermedad de Parkinson/terapia , Putamen , Receptores Nicotínicos , Núcleo Subtalámico , Sinapsis , Tálamo/citología , Tálamo/patología
8.
Proc Natl Acad Sci U S A ; 119(20): e2118712119, 2022 05 17.
Artículo en Inglés | MEDLINE | ID: mdl-35537049

RESUMEN

Alterations in the structure and functional connectivity of anterior thalamic nuclei (ATN) have been linked to reduced cognition during aging. However, ATN circuits that contribute to higher cognitive functions remain understudied. We found that the anteroventral (AV) subdivision of ATN is necessary specifically during the maintenance phase of a spatial working memory task. This function engages the AV→parasubiculum (PaS)→entorhinal cortex (EC) circuit. Aged mice showed a deficit in spatial working memory, which was associated with a decrease in the excitability of AV neurons. Activation of AV neurons or the AV→PaS circuit in aged mice was sufficient to rescue their working memory performance. Furthermore, rescued aged mice showed improved behavior-induced neuronal activity in prefrontal cortex (PFC), a critical site for working memory processes. Although the direct activation of PFC neurons in aged mice also rescued their working memory performance, we found that these animals exhibited increased levels of anxiety, which was not the case for AV→PaS circuit manipulations in aged mice. These results suggest that targeting AV thalamus in aging may not only be beneficial for cognitive functions but that this approach may have fewer unintended effects compared to direct PFC manipulations.


Asunto(s)
Núcleos Talámicos Anteriores , Animales , Núcleos Talámicos Anteriores/fisiología , Cognición , Trastornos de la Memoria , Memoria a Corto Plazo/fisiología , Ratones , Vías Nerviosas/fisiología , Neuronas
9.
Nat Commun ; 13(1): 1799, 2022 04 04.
Artículo en Inglés | MEDLINE | ID: mdl-35379803

RESUMEN

Neuronal ensembles that hold specific memory (memory engrams) have been identified in the hippocampus, amygdala, or cortex. However, it has been hypothesized that engrams of a specific memory are distributed among multiple brain regions that are functionally connected, referred to as a unified engram complex. Here, we report a partial map of the engram complex for contextual fear conditioning memory by characterizing encoding activated neuronal ensembles in 247 regions using tissue phenotyping in mice. The mapping was aided by an engram index, which identified 117 cFos+ brain regions holding engrams with high probability, and brain-wide reactivation of these neuronal ensembles by recall. Optogenetic manipulation experiments revealed engram ensembles, many of which were functionally connected to hippocampal or amygdala engrams. Simultaneous chemogenetic reactivation of multiple engram ensembles conferred a greater level of memory recall than reactivation of a single engram ensemble, reflecting the natural memory recall process. Overall, our study supports the unified engram complex hypothesis for memory storage.


Asunto(s)
Mapeo Encefálico , Memoria , Animales , Encéfalo , Miedo/fisiología , Hipocampo/fisiología , Memoria/fisiología , Ratones
10.
Gut ; 71(3): 487-496, 2022 03.
Artículo en Inglés | MEDLINE | ID: mdl-33963042

RESUMEN

OBJECTIVE: Although immunoglobulin A (IgA) is abundantly expressed in the gut and known to be an important component of mucosal barriers against luminal pathogens, its precise function remains unclear. Therefore, we tried to elucidate the effect of IgA on gut homeostasis maintenance and its mechanism. DESIGN: We generated various IgA mutant mouse lines using the CRISPR/Cas9 genome editing system. Then, we evaluated the effect on the small intestinal homeostasis, pathology, intestinal microbiota, cytokine production, and immune cell activation using intravital imaging. RESULTS: We obtained two lines, with one that contained a <50 base pair deletion in the cytoplasmic region of the IgA allele (IgA tail-mutant; IgAtm/tm) and the other that lacked the most constant region of the IgH α chain, which resulted in the deficiency of IgA production (IgA-/-). IgA-/- exhibited spontaneous inflammation in the ileum but not the other parts of the gastrointestinal tract. Associated with this, there were significantly increased lamina propria CD4+ T cells, elevated productions of IFN-γ and IL-17, increased ileal segmented filamentous bacteria and skewed intestinal microflora composition. Intravital imaging using Ca2+ biosensor showed that IgA-/- had elevated Ca2+ signalling in Peyer's patch B cells. On the other hand, IgAtm/tm seemed to be normal, suggesting that the IgA cytoplasmic tail is dispensable for the prevention of the intestinal disorder. CONCLUSION: IgA plays an important role in the mucosal homeostasis associated with the regulation of intestinal microbiota and protection against mucosal inflammation especially in the ileum.


Asunto(s)
Ileítis/etiología , Íleon/patología , Inmunoglobulina A/fisiología , Animales , Linfocitos B/fisiología , Citocinas/metabolismo , Modelos Animales de Enfermedad , Femenino , Microbioma Gastrointestinal , Homeostasis , Ileítis/metabolismo , Ileítis/patología , Íleon/metabolismo , Íleon/ultraestructura , Inflamación/etiología , Inflamación/metabolismo , Inflamación/patología , Microscopía Intravital , Masculino , Ratones , Ratones Mutantes , Linfocitos T/fisiología
11.
Neurochem Int ; 150: 105177, 2021 11.
Artículo en Inglés | MEDLINE | ID: mdl-34481039

RESUMEN

The importance of glutamate transporters in learning, memory, and emotion remains poorly understood; hence, in the present study, we investigated whether deficiency of pharmacological GLAST in neurodevelopmental processes affects cognitive and/or emotional behaviors in mice. The mice were injected with a glutamate transporter inhibitor, dl-threo-ß-benzyloxyaspartate (dl-TBOA), during the early postnatal period. At 8 weeks of age, they showed impairments in cognitive or emotional behaviors; dysfunction of glutamatergic neurotransmission (increased expressions of GLAST, GLT-1, or GFAP protein, and decreased ability of glutamate release) in the cortex or hippocampus; morphological changes (decreased cell size in the cortex and thickness of the pyramidal neuronal layer of the CA1 area in the hippocampus). Such behavioral and morphological changes were not observed in adult mice injected with dl-TBOA. These results suggest that GLAST plays an important role in the regulation of cognitive and emotional behaviors. Early postnatal glutamatergic facilitation by GLAST dysfunction leads to cognitive and emotional abnormalities due to neurodevelopmental abnormalities such as morphological changes.


Asunto(s)
Ácido Aspártico/toxicidad , Transportador 1 de Aminoácidos Excitadores/antagonistas & inhibidores , Transportador 1 de Aminoácidos Excitadores/metabolismo , Trastornos Mentales/inducido químicamente , Trastornos Mentales/metabolismo , Neuronas/metabolismo , Animales , Animales Recién Nacidos , Ácido Aspártico/administración & dosificación , Femenino , Inyecciones Intraventriculares , Masculino , Aprendizaje por Laberinto/efectos de los fármacos , Aprendizaje por Laberinto/fisiología , Trastornos Mentales/patología , Ratones , Ratones Endogámicos C57BL , Neuronas/efectos de los fármacos , Neuronas/patología , Embarazo
12.
Cell Rep ; 36(5): 109492, 2021 08 03.
Artículo en Inglés | MEDLINE | ID: mdl-34348144

RESUMEN

Early differential diagnosis between malignant and benign tumors and their underlying intrinsic differences are the most critical issues for life-threatening cancers. To study whether human acral melanomas, deadly cancers that occur on non-hair-bearing skin, have distinct origins that underlie their invasive capability, we develop fate-tracing technologies of melanocyte stem cells in sweat glands (glandular McSCs) and in melanoma models in mice and compare the cellular dynamics with human melanoma. Herein, we report that glandular McSCs self-renew to expand their migratory progeny in response to genotoxic stress and trauma to generate invasive melanomas in mice that mimic human acral melanomas. The analysis of melanocytic lesions in human volar skin reveals that genetically unstable McSCs expand in sweat glands and in the surrounding epidermis in melanomas but not in nevi. The detection of such cell spreading dynamics provides an innovative method for an early differential diagnosis of acral melanomas from nevi.


Asunto(s)
Movimiento Celular , Melanoma/patología , Nevo/patología , Células Madre/patología , Animales , Movimiento Celular/efectos de la radiación , Proliferación Celular/efectos de la radiación , Ciclina D1/metabolismo , Modelos Animales de Enfermedad , Epidermis/patología , Epidermis/efectos de la radiación , Amplificación de Genes , Inestabilidad Genómica/efectos de la radiación , Melanocitos/patología , Melanocitos/efectos de la radiación , Melanoma/diagnóstico , Ratones Endogámicos C57BL , Factores de Riesgo , Piel/patología , Piel/efectos de la radiación , Pigmentación de la Piel/efectos de la radiación , Glándulas Sudoríparas/efectos de la radiación , Rayos Ultravioleta
13.
Neuron ; 109(16): 2590-2603.e13, 2021 08 18.
Artículo en Inglés | MEDLINE | ID: mdl-34197733

RESUMEN

Neuropsychiatric disorders are often accompanied by cognitive impairments/intellectual disability (ID). It is not clear whether there are converging mechanisms underlying these debilitating impairments. We found that many autism and schizophrenia risk genes are expressed in the anterodorsal subdivision (AD) of anterior thalamic nuclei, which has reciprocal connectivity with learning and memory structures. CRISPR-Cas9 knockdown of multiple risk genes selectively in AD thalamus led to memory deficits. While the AD is necessary for contextual memory encoding, the neighboring anteroventral subdivision (AV) regulates memory specificity. These distinct functions of AD and AV are mediated through their projections to retrosplenial cortex, using differential mechanisms. Furthermore, knockdown of autism and schizophrenia risk genes PTCHD1, YWHAG, or HERC1 from AD led to neuronal hyperexcitability, and normalization of hyperexcitability rescued memory deficits in these models. This study identifies converging cellular to circuit mechanisms underlying cognitive deficits in a subset of neuropsychiatric disease models.


Asunto(s)
Núcleos Talámicos Anteriores/fisiopatología , Disfunción Cognitiva/fisiopatología , Vías Nerviosas/fisiopatología , Núcleos Talámicos/fisiopatología , Animales , Núcleos Talámicos Anteriores/fisiología , Corteza Cerebral/fisiopatología , Cognición/fisiología , Ratones , Vías Nerviosas/fisiología , Núcleos Talámicos/fisiología
14.
Cell ; 184(12): 3267-3280.e18, 2021 06 10.
Artículo en Inglés | MEDLINE | ID: mdl-34043941

RESUMEN

Searching for factors to improve knockin efficiency for therapeutic applications, biotechnology, and generation of non-human primate models of disease, we found that the strand exchange protein RAD51 can significantly increase Cas9-mediated homozygous knockin in mouse embryos through an interhomolog repair (IHR) mechanism. IHR is a hallmark of meiosis but only occurs at low frequencies in somatic cells, and its occurrence in zygotes is controversial. Using multiple approaches, we provide evidence for an endogenous IHR mechanism in the early embryo that can be enhanced by RAD51. This process can be harnessed to generate homozygotes from wild-type zygotes using exogenous donors and to convert heterozygous alleles into homozygous alleles without exogenous templates. Furthermore, we identify additional IHR-promoting factors and describe features of IHR events. Together, our findings show conclusive evidence for IHR in mouse embryos and describe an efficient method for enhanced gene conversion.


Asunto(s)
Reparación del ADN/genética , Conversión Génica , Recombinasa Rad51/metabolismo , Alelos , Animales , Secuencia de Bases , Proteína 9 Asociada a CRISPR/metabolismo , Proteínas de Unión al Calcio/metabolismo , Proteínas de Ciclo Celular/metabolismo , Cromosomas de los Mamíferos/genética , Roturas del ADN de Doble Cadena , Embrión de Mamíferos , Femenino , Sitios Genéticos , Recombinación Homóloga/genética , Homocigoto , Humanos , Mutación INDEL/genética , Ratones Endogámicos C57BL , Mosaicismo , Proteínas Nucleares/metabolismo , Polimorfismo de Nucleótido Simple/genética , Ribonucleoproteínas/metabolismo , Cigoto/metabolismo
15.
J Neurosci ; 41(10): 2106-2118, 2021 03 10.
Artículo en Inglés | MEDLINE | ID: mdl-33478985

RESUMEN

Seizures invite seizures. At the initial stage of epilepsy, seizures intensify with each episode; however, the mechanisms underlying this exacerbation remain to be solved. Astrocytes have a strong control over neuronal excitability and the mode of information processing. This control is accomplished by adjusting the levels of various ions in the extracellular space. The network of astrocytes connected via gap junctions allows a wider or more confined distribution of these ions depending on the open probability of the gap junctions. K+ clearance relies on the K+ uptake by astrocytes and the subsequent diffusion of K+ through the astrocyte network. When astrocytes become uncoupled, K+ clearance becomes hindered. Accumulation of extracellular K+ leads to hyperexcitability of neurons. Here, using acute hippocampal slices from mice, we uncovered that brief periods of epileptiform activity result in gap junction uncoupling. In slices that experienced short-term epileptiform activity, extracellular K+ transients in response to glutamate became prolonged. Na+ imaging with a fluorescent indicator indicated that intercellular diffusion of small cations in the astrocytic syncytium via gap junctions became rapidly restricted after epileptiform activity. Using a transgenic mouse with astrocyte-specific expression of a pH sensor (Lck-E2GFP), we confirmed that astrocytes react to epileptiform activity with intracellular alkalization. Application of Na+/HCO3- cotransporter blocker led to the suppression of intracellular alkalization of astrocytes and to the prevention of astrocyte uncoupling and hyperactivity intensification both in vitro and in vivo Therefore, the inhibition of astrocyte alkalization could become a promising therapeutic strategy for countering epilepsy development.SIGNIFICANCE STATEMENT We aimed to understand the mechanisms underlying the plastic change of forebrain circuits associated with the intensification of epilepsy. Here, we demonstrate that first-time exposure to only brief periods of epileptiform activity results in acute disturbance of the intercellular astrocyte network formed by gap junctions in hippocampal tissue slices from mice. Moreover, rapid clearance of K+ from the extracellular space was impaired. Epileptiform activity activated inward Na+/HCO3- cotransport in astrocytes by cell depolarization, resulting in their alkalization. Our data suggest that alkaline pH shifts in astrocytes lead to gap junction uncoupling, hampering K+ clearance, and thereby to exacerbation of epilepsy. Pharmacological intervention could become a promising new strategy to dampen neuronal hyperexcitability and epileptogenesis.


Asunto(s)
Astrocitos/metabolismo , Epilepsia/metabolismo , Epilepsia/fisiopatología , Uniones Comunicantes/metabolismo , Animales , Hipocampo , Concentración de Iones de Hidrógeno , Ratones , Ratones Endogámicos BALB C , Ratones Endogámicos C57BL , Plasticidad Neuronal/fisiología , Neuronas/metabolismo , Potasio/metabolismo
16.
Biosci Microbiota Food Health ; 39(4): 209-218, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-33117619

RESUMEN

Mechanosensory systems have been implicated in the maintenance of gut homeostasis, but details on the related mechanisms are scarce. Recently, we generated a conditional Ca2+ biosensor yellow cameleon 3.60 (YC3.60)-expressing transgenic mouse model and established a five-dimensional (5D; x, y, z, time, and Ca2+) intravital imaging system for investigating lymphoid tissues and enteric epithelial cell responses. To validate this gut-sensing system, we visualized responses of enteric nervous system (ENS) cells in Nestin-Cre/YC3.60flox mice with specific YC3.60 expression. The ENS, including the myenteric (Auerbach's) and submucous (Meissner's) plexuses, could be visualized without staining in this mouse line, indicating that the probe produced sufficient fluorescent intensity. Furthermore, the myenteric plexus exhibited Ca2+ signaling during peristalsis without stimulation. Nerve endings on the surface of enteric epithelia also exhibited Ca2+ signaling without stimulation. Mechanical stress induced transient salient Ca2+ flux in the myenteric plexus and in enteric epithelial cells in the Nestin-Cre/YC3.60 and the CAG-Cre/YC3.60 lines, respectively. Furthermore, the potential TRPM7 inhibitors were shown to attenuate mechanical stress-mediated Ca2+ signaling. These data indicate that the present intravital imaging system can be used to visualize mechanosensory Ca2+ signaling in ENS cells and enteric epithelial cells.

17.
Neuroimage ; 223: 117318, 2020 12.
Artículo en Inglés | MEDLINE | ID: mdl-32882386

RESUMEN

Diffusion functional magnetic resonance imaging (DfMRI) has been proposed as an alternative functional imaging method to detect brain activity without confounding hemodynamic effects. Here, taking advantage of this DfMRI feature, we investigated abnormalities of dynamic brain function in a neuropsychiatric disease mouse model (glial glutamate transporter-knockdown mice with obsessive-compulsive disorder [OCD]-related behavior). Our DfMRI approaches consisted of three analyses: resting state brain activity, functional connectivity, and propagation of neural information. We detected hyperactivation and biased connectivity across the cortico-striatal-thalamic circuitry, which is consistent with known blood oxygen-level dependent (BOLD)-fMRI patterns in OCD patients. In addition, we performed ignition-driven mean integration (IDMI) analysis, which combined activity and connectivity analyses, to evaluate neural propagation initiated from brain activation. This analysis revealed an unbalanced distribution of neural propagation initiated from intrinsic local activation to the global network, while these were not detected by the conventional method with BOLD-fMRI. This abnormal function detected by DfMRI was associated with OCD-related behavior. Together, our comprehensive DfMRI approaches can successfully provide information on dynamic brain function in normal and diseased brains.


Asunto(s)
Encéfalo/patología , Encéfalo/fisiopatología , Imagen de Difusión por Resonancia Magnética , Trastorno Obsesivo Compulsivo/patología , Trastorno Obsesivo Compulsivo/fisiopatología , Animales , Encéfalo/diagnóstico por imagen , Mapeo Encefálico/métodos , Modelos Animales de Enfermedad , Transportador 2 de Aminoácidos Excitadores/genética , Técnicas de Silenciamiento del Gen , Ratones , Vías Nerviosas/diagnóstico por imagen , Vías Nerviosas/patología , Vías Nerviosas/fisiopatología , Trastorno Obsesivo Compulsivo/diagnóstico por imagen
18.
J Neurosci ; 40(38): 7241-7254, 2020 09 16.
Artículo en Inglés | MEDLINE | ID: mdl-32847967

RESUMEN

Maladaptation to stress is a critical risk factor in stress-related disorders, such as major depression and post-traumatic stress disorder (PTSD). Dopamine signaling in the nucleus accumbens (NAc) has been shown to modulate behavior by reinforcing learning and evading aversive stimuli, which are important for the survival of animals under environmental challenges such as stress. However, the mechanisms through which dopaminergic transmission responds to stressful events and subsequently regulates its downstream neuronal activity during stress remain unknown. To investigate how dopamine signaling modulates stress-coping behavior, we measured the subsecond fluctuation of extracellular dopamine concentration and pH using fast scanning cyclic voltammetry (FSCV) in the NAc, a postsynaptic target of midbrain dopaminergic neurons, in male mice engaged in a tail suspension test (TST). The results revealed a transient decrease in dopamine concentration and an increase in pH levels when the animals changed behaviors, from being immobile to struggling. Interestingly, optogenetic inhibition of dopamine release in NAc, potentiated the struggling behavior in animals under the TST. We then addressed the causal relationship of such a dopaminergic transmission with behavioral alterations by knocking out both the dopamine receptors, i.e., D1 and D2, in the NAc using viral vector-mediated genome editing. Behavioral analyses revealed that male D1 knock-out mice showed significantly more struggling bouts and longer struggling durations during the TST, while male D2 knock-out mice did not. Our results therefore indicate that D1 dopaminergic signaling in the NAc plays a pivotal role in the modulation of stress-coping behaviors in animals under tail suspension stress.SIGNIFICANCE STATEMENT The tail suspension test (TST) has been widely used as a despair-based behavioral assessment to screen the antidepressant so long. Despite its prevalence in the animal studies, the neural substrate underlying the changes of behavior during the test remains unclear. This study provides an evidence for a role of dopaminergic transmission in the modulation of stress-coping behavior during the TST, a despair test widely used to screen the antidepressants in rodents. Taking into consideration the fact that the dopamine metabolism is upregulated by almost all antidepressants, a part of which acts directly on the dopaminergic transmission, current results would uncover the molecular mechanism through which the dopaminergic signaling mediates antidepressant effect with facilitation of the recovery from the despair-like behavior in the TST.


Asunto(s)
Adaptación Psicológica , Dopamina/metabolismo , Neuronas Dopaminérgicas/metabolismo , Núcleo Accumbens/metabolismo , Estrés Psicológico/metabolismo , Animales , Línea Celular Tumoral , Neuronas Dopaminérgicas/fisiología , Masculino , Ratones , Ratones Endogámicos C57BL , Núcleo Accumbens/citología , Núcleo Accumbens/fisiopatología , Receptores Dopaminérgicos/genética , Receptores Dopaminérgicos/metabolismo , Estrés Psicológico/fisiopatología , Transmisión Sináptica
19.
Biochem Biophys Res Commun ; 529(4): 943-949, 2020 09 03.
Artículo en Inglés | MEDLINE | ID: mdl-32819603

RESUMEN

Glaucoma is one of the leading causes of blindness characterized by progressive loss of retinal ganglion cells (RGCs) and their axons. We reported that glutamate/aspartate transporter (GLAST) knockout mice showed progressive RGC loss and optic nerve degeneration that are similar to glaucoma. To explore the possibility that rare variants in the EAAT1 gene (the human homolog of GLAST) cause susceptibility to glaucoma, we performed targeted sequencing of EAAT1 in 440 patients with glaucoma and 450 control subjects. We identified 8 rare variants in 20 out of 440 patients, including 4 synonymous and 4 missense variants located at protein coding regions. One of these rare variants (rs117295512) showed significant association with the risk of glaucoma (OR = 10.44, P = 0.005). Furthermore, the allele frequency for loss-of-function EAAT1 variants, pAla169Gly and pAla329Thr, was 5.5 folds higher in the glaucoma (1.1%) compared with the control cohort (0.2%). These findings suggest that these rare variants may contribute to the pathogenesis of glaucoma and that loss-of-function variants in EAAT1 are present in a small number of patients with glaucoma.


Asunto(s)
Transportador 1 de Aminoácidos Excitadores/genética , Glaucoma de Ángulo Abierto/genética , Glaucoma de Baja Tensión/genética , Mutación Missense , Mutación Silenciosa , Alelos , Secuencia de Aminoácidos , Animales , Estudios de Casos y Controles , Línea Celular , Transportador 1 de Aminoácidos Excitadores/deficiencia , Expresión Génica , Frecuencia de los Genes , Glaucoma de Ángulo Abierto/metabolismo , Glaucoma de Ángulo Abierto/patología , Humanos , Presión Intraocular , Glaucoma de Baja Tensión/metabolismo , Glaucoma de Baja Tensión/patología , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Nervio Óptico/metabolismo , Nervio Óptico/patología , Células Ganglionares de la Retina/metabolismo , Células Ganglionares de la Retina/patología , Factores de Riesgo , Alineación de Secuencia , Homología de Secuencia de Aminoácido
20.
Transl Psychiatry ; 10(1): 247, 2020 07 22.
Artículo en Inglés | MEDLINE | ID: mdl-32699248

RESUMEN

Schizophrenia (SCZ) is known to be a heritable disorder; however, its multifactorial nature has significantly hampered attempts to establish its pathogenesis. Therefore, in this study, we performed genome-wide copy-number variation (CNV) analysis of 2940 patients with SCZ and 2402 control subjects and identified a statistically significant association between SCZ and exonic CNVs in the ARHGAP10 gene. ARHGAP10 encodes a member of the RhoGAP superfamily of proteins that is involved in small GTPase signaling. This signaling pathway is one of the SCZ-associated pathways and may contribute to neural development and function. However, the ARHGAP10 gene is often confused with ARHGAP21, thus, the significance of ARHGAP10 in the molecular pathology of SCZ, including the expression profile of the ARHGAP10 protein, remains poorly understood. To address this issue, we focused on one patient identified to have both an exonic deletion and a missense variant (p.S490P) in ARHGAP10. The missense variant was found to be located in the RhoGAP domain and was determined to be relevant to the association between ARHGAP10 and the active form of RhoA. We evaluated ARHGAP10 protein expression in the brains of reporter mice and generated a mouse model to mimic the patient case. The model exhibited abnormal emotional behaviors, along with reduced spine density in the medial prefrontal cortex (mPFC). In addition, primary cultured neurons prepared from the mouse model brain exhibited immature neurites in vitro. Furthermore, we established induced pluripotent stem cells (iPSCs) from this patient, and differentiated them into tyrosine hydroxylase (TH)-positive neurons in order to analyze their morphological phenotypes. TH-positive neurons differentiated from the patient-derived iPSCs exhibited severe defects in both neurite length and branch number; these defects were restored by the addition of the Rho-kinase inhibitor, Y-27632. Collectively, our findings suggest that rare ARHGAP10 variants may be genetically and biologically associated with SCZ and indicate that Rho signaling represents a promising drug discovery target for SCZ treatment.


Asunto(s)
Esquizofrenia , Animales , Variaciones en el Número de Copia de ADN , Proteínas Activadoras de GTPasa/genética , Humanos , Ratones , Esquizofrenia/genética , Transducción de Señal , Proteína de Unión al GTP rhoA
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...