Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 26
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
Magn Reson Med ; 92(2): 730-740, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-38440957

RESUMEN

PURPOSE: To research and evaluate the performance of broadband tailored kT-point pulses (TP) and universal pulses (UP) for homogeneous excitation of the human heart at 7T. METHODS: Relative 3D B 1 + $$ {\mathrm{B}}_1^{+} $$ -maps of the thorax were acquired from 29 healthy volunteers. TP and UP were designed using the small-tip-angle approximation for a different composition of up to seven resonance frequencies. TP were computed for each of the 29 B 1 + $$ {\mathrm{B}}_1^{+} $$ -maps, and UPs were calculated using 22 B 1 + $$ {\mathrm{B}}_1^{+} $$ -maps and tested in seven testcases. The performance of the pulses was analyzed using the coefficient of variation (CV) in the 3D heart volumes. The 3D gradient-echo (GRE) scans were acquired for the seven testcases to qualitatively validate the B 1 + $$ {\mathrm{B}}_1^{+} $$ -predictions. RESULTS: Single- and double-frequency optimized pulses achieved homogeneity in flip angle (FA) for the frequencies they were optimized for, while the broadband pulses achieved uniformity in FA across a 1300 Hz frequency range. CONCLUSION: Broadband TP and UP can be used for homogeneous excitation of the heart volume across a 1300 Hz frequency range, including the water and the main six fat peaks, or with longer pulse durations and higher FAs for a smaller transmit bandwidth. Moreover, despite large inter-volunteer variations, broadband UP can be used for calibration-free 3D heart FA homogenization in time-critical situations.


Asunto(s)
Corazón , Imagenología Tridimensional , Humanos , Masculino , Adulto , Corazón/diagnóstico por imagen , Femenino , Algoritmos , Imagen por Resonancia Magnética , Reproducibilidad de los Resultados , Voluntarios Sanos , Adulto Joven
2.
MAGMA ; 36(2): 257-277, 2023 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-36920549

RESUMEN

OBJECTIVE: To examine the feasibility of human cardiac MR (CMR) at 14.0 T using high-density radiofrequency (RF) dipole transceiver arrays in conjunction with static and dynamic parallel transmission (pTx). MATERIALS AND METHODS: RF arrays comprised of self-grounded bow-tie (SGBT) antennas, bow-tie (BT) antennas, or fractionated dipole (FD) antennas were used in this simulation study. Static and dynamic pTx were applied to enhance transmission field (B1+) uniformity and efficiency in the heart of the human voxel model. B1+ distribution and maximum specific absorption rate averaged over 10 g tissue (SAR10g) were examined at 7.0 T and 14.0 T. RESULTS: At 14.0 T static pTx revealed a minimum B1+ROI efficiency of 0.91 µT/√kW (SGBT), 0.73 µT/√kW (BT), and 0.56 µT/√kW (FD) and maximum SAR10g of 4.24 W/kg, 1.45 W/kg, and 2.04 W/kg. Dynamic pTx with 8 kT points indicate a balance between B1+ROI homogeneity (coefficient of variation < 14%) and efficiency (minimum B1+ROI > 1.11 µT/√kW) at 14.0 T with a maximum SAR10g < 5.25 W/kg. DISCUSSION: MRI of the human heart at 14.0 T is feasible from an electrodynamic and theoretical standpoint, provided that multi-channel high-density antennas are arranged accordingly. These findings provide a technical foundation for further explorations into CMR at 14.0 T.


Asunto(s)
Corazón , Imagen por Resonancia Magnética , Humanos , Corazón/diagnóstico por imagen , Simulación por Computador , Ondas de Radio , Fantasmas de Imagen , Diseño de Equipo
3.
Magn Reson Med ; 89(3): 1002-1015, 2023 03.
Artículo en Inglés | MEDLINE | ID: mdl-36336877

RESUMEN

PURPOSE: Subject-tailored parallel transmission pulses for ultra-high fields body applications are typically calculated based on subject-specific B 1 + $$ {\mathrm{B}}_1^{+} $$ -maps of all transmit channels, which require lengthy adjustment times. This study investigates the feasibility of using deep learning to estimate complex, channel-wise, relative 2D B 1 + $$ {\mathrm{B}}_1^{+} $$ -maps from a single gradient echo localizer to overcome long calibration times. METHODS: 126 channel-wise, complex, relative 2D B 1 + $$ {\mathrm{B}}_1^{+} $$ -maps of the human heart from 44 subjects were acquired at 7T using a Cartesian, cardiac gradient-echo sequence obtained under breath-hold to create a library for network training and cross-validation. The deep learning predicted maps were qualitatively compared to the ground truth. Phase-only B 1 + $$ {\mathrm{B}}_1^{+} $$ -shimming was subsequently performed on the estimated B 1 + $$ {\mathrm{B}}_1^{+} $$ -maps for a region of interest covering the heart. The proposed network was applied at 7T to 3 unseen test subjects. RESULTS: The deep learning-based B 1 + $$ {\mathrm{B}}_1^{+} $$ -maps, derived in approximately 0.2 seconds, match the ground truth for the magnitude and phase. The static, phase-only pulse design performs best when maximizing the mean transmission efficiency. In-vivo application of the proposed network to unseen subjects demonstrates the feasibility of this approach: the network yields predicted B 1 + $$ {\mathrm{B}}_1^{+} $$ -maps comparable to the acquired ground truth and anatomical scans reflect the resulting B 1 + $$ {\mathrm{B}}_1^{+} $$ -pattern using the deep learning-based maps. CONCLUSION: The feasibility of estimating 2D relative B 1 + $$ {\mathrm{B}}_1^{+} $$ -maps from initial localizer scans of the human heart at 7T using deep learning is successfully demonstrated. Because the technique requires only sub-seconds to derive channel-wise B 1 + $$ {\mathrm{B}}_1^{+} $$ -maps, it offers high potential for advancing clinical body imaging at ultra-high fields.


Asunto(s)
Aprendizaje Profundo , Imagen por Resonancia Magnética , Humanos , Imagen por Resonancia Magnética/métodos , Interpretación de Imagen Asistida por Computador/métodos , Corazón/diagnóstico por imagen , Calibración
4.
Phys Med Biol ; 67(24)2022 12 09.
Artículo en Inglés | MEDLINE | ID: mdl-36265478

RESUMEN

Objective. To provide 3D high-resolution cardiac T1 maps using model-based super-resolution reconstruction (SRR).Approach. Due to signal-to-noise ratio limitations and the motion of the heart during imaging, often 2D T1 maps with only low through-plane resolution (i.e. slice thickness of 6-8 mm) can be obtained. Here, a model-based SRR approach is presented, which combines multiple stacks of 2D acquisitions with 6-8 mm slice thickness and generates 3D high-resolution T1 maps with a slice thickness of 1.5-2 mm. Every stack was acquired in a different breath hold (BH) and any misalignment between BH was corrected retrospectively. The novelty of the proposed approach is the BH correction and the application of model-based SRR on cardiac T1 Mapping. The proposed approach was evaluated in numerical simulations and phantom experiments and demonstrated in four healthy subjects.Main results. Alignment of BH states was essential for SRR even in healthy volunteers. In simulations, respiratory motion could be estimated with an RMS error of 0.18 ± 0.28 mm. SRR improved the visualization of small structures. High accuracy and precision (average standard deviation of 69.62 ms) of the T1 values was ensured by SRR while the detectability of small structures increased by 40%.Significance. The proposed SRR approach provided T1 maps with high in-plane and high through-plane resolution (1.3 × 1.3 × 1.5-2 mm3). The approach led to improvements in the visualization of small structures and precise T1 values.


Asunto(s)
Ecocardiografía Tridimensional , Humanos , Estudios Retrospectivos
5.
Magn Reson Med ; 88(5): 1978-1993, 2022 11.
Artículo en Inglés | MEDLINE | ID: mdl-35906900

RESUMEN

PURPOSE: To simultaneously acquire spectroscopic signals from two MRS voxels using a multi-banded 2 spin-echo, full-intensity acquired localized (2SPECIAL) sequence, and to decompose the signal to their respective regions by a novel voxel-GRAPPA (vGRAPPA) decomposition approach for in vivo brain applications at 7 T. METHODS: A wideband, uniform rate, smooth truncation (WURST) multi-banded pulse was incorporated into SPECIAL to implement 2SPECIAL for simultaneous multi-voxel spectroscopy (sMVS). To decompose the acquired data, the voxel-GRAPPA decomposition algorithm is introduced, and its performance is compared to the SENSE-based decomposition. Furthermore, the limitations of two-voxel excitation concerning the multi-banded adiabatic inversion pulse, as well as of the combined B0 shim and B1 + adjustments, are evaluated. RESULTS: It was successfully shown that the 2SPECIAL sequence enables sMVS without a significant loss in SNR while reducing the total scan time by 21.6% compared to two consecutive acquisitions. The proposed voxel-GRAPPA algorithm properly reassigns the signal components to their respective origin region and shows no significant differences to the well-established SENSE-based algorithm in terms of leakage (both <10%) or Cramér-Rao lower bounds (CRLB) for in vivo applications, while not requiring the acquisition of additional sensitivity maps and thus decreasing motion sensitivity. CONCLUSION: The use of 2SPECIAL in combination with the novel voxel-GRAPPA decomposition technique allows a substantial reduction of measurement time compared to the consecutive acquisition of two single voxels without a significant decrease in spectral quality or metabolite quantification accuracy and thus provides a new option for multiple-voxel applications.


Asunto(s)
Algoritmos , Encéfalo , Encéfalo/diagnóstico por imagen , Encéfalo/metabolismo , Movimiento (Física)
6.
NMR Biomed ; 35(11): e4790, 2022 11.
Artículo en Inglés | MEDLINE | ID: mdl-35731240

RESUMEN

Non-selective inversion pulses find widespread use in MRI applications, where requirements on them are increasingly demanding. With the use of high and ultra-high field strength systems, robustness to Δ B 0 and B 1 + inhomogeneities, while tackling SAR and hardware limitations, has rapidly become important. In this work, we propose a time-optimal control framework for the optimization of Δ B 0 - and B 1 + -robust inversion pulses. Robustness is addressed by means of ensemble formulations, while allowing inclusion of hardware and energy limitations. The framework is flexible and performs excellently for various optimization goals. The optimization results are analyzed extensively in numerical experiments. Furthermore, they are validated, and compared with adiabatic RF pulses, in various phantom and in vivo measurements on a 3 T MRI system.


Asunto(s)
Algoritmos , Imagen por Resonancia Magnética , Frecuencia Cardíaca , Imagen por Resonancia Magnética/métodos , Fantasmas de Imagen
7.
Magn Reson Med ; 87(6): 2862-2871, 2022 06.
Artículo en Inglés | MEDLINE | ID: mdl-35142400

RESUMEN

PURPOSE: Human heart imaging at ultra-high fields is highly challenging because of respiratory motion-induced artefacts and spatially heterogeneous B1+ profiles. This work demonstrates that respiration resolved 3D B1+ -maps can be used with a dedicated tailored and universal parallel transmission (pTx) pulse design to compensate respiration related B1+ changes in subjects performing shallow and deep breathing (SB/DB). METHODS: Three-dimensional (3D) B1+ -maps of the thorax were acquired in 31 subjects under SB and in 15 subjects under SB and DB. Different universal and tailored non-selective pTx pulses were designed from non-respiration resolved (NRR) and respiration resolved (RR) reconstructions of the SB/DB B1+ -maps. The performance of all pulses was tested with RR-SB/DB B1+ -maps. Respiration-robust tailored and universal pulses were applied in vivo in 5 subjects at 7T in 3D gradient-echo free-breathing scans. RESULTS: All optimized pTx pulses performed well for SB. For DB, however, only the universal and the tailored respiration-robust pulses achieved homogeneous flip angles (FAs) in all subjects and across all respiration states, whereas the tailored respiration-specific pulses resulted in a higher FA variation. The respiration-robust universal pulse resulted in an average coefficient of variation in the FA maps of 12.6% compared to 8.2% achieved by tailored respiration-robust pulses. In vivo measurements at 7T demonstrate the benefits of using respiration-robust pulses for DB. CONCLUSION: Universal and tailored respiration-robust pTx pulses based on RR B1+ -maps are highly preferred to achieve 3D heart FA homogenization at 7T when subjects perform DB, whereas universal and tailored pulses based on NRR B1+ -maps are sufficient when subjects perform SB.


Asunto(s)
Encéfalo , Imagen por Resonancia Magnética , Algoritmos , Artefactos , Técnicas de Imagen Cardíaca , Humanos , Imagen por Resonancia Magnética/métodos , Respiración
8.
Magn Reson Med ; 87(6): 2621-2636, 2022 06.
Artículo en Inglés | MEDLINE | ID: mdl-35092090

RESUMEN

PURPOSE: Respiratory motion-compensated (MC) 3D cardiac fat-water imaging at 7T. METHODS: Free-breathing bipolar 3D triple-echo gradient-recalled-echo (GRE) data with radial phase-encoding (RPE) trajectory were acquired in 11 healthy volunteers (7M\4F, 21-35 years, mean: 30 years) with a wide range of body mass index (BMI; 19.9-34.0 kg/m2 ) and volunteer tailored B1+ shimming. The bipolar-corrected triple-echo GRE-RPE data were binned into different respiratory phases (self-navigation) and were used for the estimation of non-rigid motion vector fields (MF) and respiratory resolved (RR) maps of the main magnetic field deviations (ΔB0 ). RR ΔB0 maps and MC ΔB0 maps were compared to a reference respiratory phase to assess respiration-induced changes. Subsequently, cardiac binned fat-water images were obtained using a model-based, respiratory motion-corrected image reconstruction. RESULTS: The 3D cardiac fat-water imaging at 7T was successfully demonstrated. Local respiration-induced frequency shifts in MC ΔB0 maps are small compared to the chemical shifts used in the multi-peak model. Compared to the reference exhale ΔB0 map these changes are in the order of 10 Hz on average. Cardiac binned MC fat-water reconstruction reduced respiration induced blurring in the fat-water images, and flow artifacts are reduced in the end-diastolic fat-water separated images. CONCLUSION: This work demonstrates the feasibility of 3D fat-water imaging at UHF for the entire human heart despite spatial and temporal B1+ and B0 variations, as well as respiratory and cardiac motion.


Asunto(s)
Imagen por Resonancia Magnética , Agua , Artefactos , Humanos , Imagenología Tridimensional , Movimiento (Física) , Respiración
9.
Magn Reson Med ; 87(1): 70-84, 2022 01.
Artículo en Inglés | MEDLINE | ID: mdl-34399002

RESUMEN

PURPOSE: MRI at ultra-high fields in the human body is highly challenging and requires lengthy calibration times to compensate for spatially heterogeneous B1+ profiles. This study investigates the feasibility of using pre-computed universal pulses for calibration-free homogeneous 3D flip angle distribution in the human heart at 7T. METHODS: Twenty-two channel-wise 3D B1+ data sets were acquired under free-breathing in 19 subjects to generate a library for an offline universal pulse (UP) design (group 1: 12 males [M] and 7 females [F], 21-66 years, 19.8-28.3 kg/m2 ). Three of these subjects (2M/1F, 21-33 years, 20.8-23.6 kg/m2 ) were re-scanned on different days. A 4kT-points UP optimized for the 22 channel-wise 3D B1+ data sets in group 1 (UP22-4kT) is proposed and applied at 7T in 9 new and unseen subjects (group 2: 4M/5F, 25-56 years, 19.5-35.3 kg/m2 ). Multiple tailored and universal static and dynamic parallel-transmit (pTx) pulses were designed and evaluated for different permutations of the B1+ data sets in group 1 and 2. RESULTS: The proposed UP22-4kT provides low B1+ variation in all subjects, seen and unseen, without severe signal drops. Experimental data at 7T acquired with UP22-4kT shows comparable image quality as data acquired with tailored-4kT pulses and demonstrates successful calibration-free pTx of the human heart. CONCLUSION: UP22-4kT allows for calibration-free homogeneous flip angle distributions across the human heart at 7T. Large inter-subject variations because of sex, age, and body mass index are well tolerated. The proposed universal pulse removes the need for lengthy (10-15 min) calibration scans and therefore has the potential to bring body imaging at 7T closer to the clinical application.


Asunto(s)
Algoritmos , Imagen por Resonancia Magnética , Encéfalo , Calibración , Femenino , Corazón/diagnóstico por imagen , Humanos , Masculino , Respiración
10.
Magn Reson Med ; 87(3): 1119-1135, 2022 03.
Artículo en Inglés | MEDLINE | ID: mdl-34783376

RESUMEN

PURPOSE: To introduce a study design and statistical analysis framework to assess the repeatability, reproducibility, and minimal detectable changes (MDCs) of metabolite concentrations determined by in vivo MRS. METHODS: An unbalanced nested study design was chosen to acquire in vivo MRS data within different repeatability and reproducibility scenarios. A spin-echo, full-intensity acquired localized (SPECIAL) sequence was employed at 7 T utlizing three different inversion pulses: a hyperbolic secant (HS), a gradient offset independent adiabaticity (GOIA), and a wideband, uniform rate, smooth truncation (WURST) pulse. Metabolite concentrations, Cramér-Rao lower bounds (CRLBs) and coefficients of variation (CVs) were calculated. Both Bland-Altman analysis and a restricted maximum-likelihood estimation (REML) analysis were performed to estimate the different variance contributions of the repeatability and reproducibility of the measured concentration. A Bland-Altmann analysis of the spectral shape was performed to assess the variance of the spectral shape, independent of quantification model influences. RESULTS: For the used setup, minimal detectable changes of brain metabolite concentrations were found to be between 0.40 µmol/g and 2.23 µmol/g. CRLBs account for only 16 % to 74 % of the total variance of the metabolite concentrations. The application of gradient-modulated inversion pulses in SPECIAL led to slightly improved repeatability, but overall reproducibility appeared to be limited by differences in positioning, calibration, and other day-to-day variations throughout different sessions. CONCLUSION: A framework is introduced to estimate the precision of metabolite concentrations obtained by MRS in vivo, and the minimal detectable changes for 13 metabolite concentrations measured at 7 T using SPECIAL are obtained.


Asunto(s)
Encéfalo , Encéfalo/diagnóstico por imagen , Humanos , Espectroscopía de Resonancia Magnética , Reproducibilidad de los Resultados
11.
J Magn Reson ; 329: 107011, 2021 08.
Artículo en Inglés | MEDLINE | ID: mdl-34147025

RESUMEN

PURPOSE: To introduce new solution methods for the Bloch and Bloch-McConnell equations and compare them quantitatively to different known approaches. THEORY AND METHODS: A new exact solution per time step is derived by means of eigenvalues and generalized eigenvectors. Fast numerical solution methods based on asymmetric and symmetric operator splitting, which are already known for the Bloch equations, are extended to the Bloch-McConnell equations. Those methods are compared to other numerical methods including spin domain, one-step and multi-step methods, and matrix exponential. Error metrics are introduced based on the exact solution method, which allows to assess the accuracy of each solution method quantitatively for arbitrary example data. RESULTS: Accuracy and performance properties for nine different solution methods are analyzed and compared in extensive numerical experiments including various examples for non-selective and slice-selective MR imaging applications. The accuracy of the methods heavily varies, in particular for short relaxation times and long pulse durations. CONCLUSION: In absence of relaxation effects, the numerical results confirm the rotation matrices approach as accurate and computationally efficient Bloch solution method. Otherwise, as well as for the Bloch-McConnell equations, symmetric operator splitting methods are recommended due to their excellent numerical accuracy paired with efficient run time.

12.
Eur Addict Res ; 27(6): 428-438, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34077927

RESUMEN

INTRODUCTION: Cigarette smoking is known to modulate brain metabolism and brain function. How the dynamics of these metabolic alterations influence the active performance of higher order cognitive tasks in smokers, compared to non-smokers, is still unclear. The present exploratory study sought to examine the impact of smoking on the "complete" metabolic profile while the participants performed a working memory (N-back) task. METHODS: The study sample consisted of 40 young male healthy participants (smokers [n = 20] and non-smokers [n = 20]). Functional magnetic resonance spectroscopy data were acquired using a 3 T whole-body MR system. Data analysis was performed using Java-based Magnetic Resonance User Interface software, and metabolite ratios with respect to creatine (Cr) were calculated. RESULTS: On a behavioural level, smokers showed worse performance (measured by d') than non-smokers. However, we observed significant differences in the metabolite concentrations in smokers compared to non-smokers, which also changed over the course of the N-back task. A significant effect of the group was observed with smokers showing lower glutamate/Cr (Glx/Cr) and choline/Cr (Cho/Cr) ratios than non-smokers. Further, N-acetyl aspartate (NAA/Cr) and Cho/Cr ratios were significantly different during the rest and the task conditions. In addition, our results demonstrated the metabolite interactions (NAA and Cho, Glx and myo-inositol [mI], and Cho and mI). CONCLUSION: Further studies are necessary to shed more light on the association between smoking behaviours and metabolic alterations. However, our preliminary findings would assist in this future research to have a complete understanding of the metabolite interactions not only in smoking but also in addiction research.


Asunto(s)
Memoria a Corto Plazo , Fumadores , Humanos , Imagen por Resonancia Magnética , Espectroscopía de Resonancia Magnética , Masculino , Corteza Prefrontal , Adulto Joven
13.
Magn Reson Med ; 85(6): 3308-3317, 2021 06.
Artículo en Inglés | MEDLINE | ID: mdl-33480029

RESUMEN

PURPOSE: Rapid 2DRF pulse design with subject-specific B1+ inhomogeneity and B0 off-resonance compensation at 7 T predicted from convolutional neural networks is presented. METHODS: The convolution neural network was trained on half a million single-channel transmit 2DRF pulses optimized with an optimal control method using artificial 2D targets, B1+ and B0 maps. Predicted pulses were tested in a phantom and in vivo at 7 T with measured B1+ and B0 maps from a high-resolution gradient echo sequence. RESULTS: Pulse prediction by the trained convolutional neural network was done on the fly during the MR session in approximately 9 ms for multiple hand-drawn regions of interest and the measured B1+ and B0 maps. Compensation of B1+ inhomogeneity and B0 off-resonances has been confirmed in the phantom and in vivo experiments. The reconstructed image data agree well with the simulations using the acquired B1+ and B0 maps, and the 2DRF pulse predicted by the convolutional neural networks is as good as the conventional RF pulse obtained by optimal control. CONCLUSION: The proposed convolutional neural network-based 2DRF pulse design method predicts 2DRF pulses with an excellent excitation pattern and compensated B1+ and B0 variations at 7 T. The rapid 2DRF pulse prediction (9 ms) enables subject-specific high-quality 2DRF pulses without the need to run lengthy optimizations.


Asunto(s)
Imagen por Resonancia Magnética , Fantasmas de Imagen
14.
NMR Biomed ; 34(3): e4450, 2021 03.
Artículo en Inglés | MEDLINE | ID: mdl-33325581

RESUMEN

Three-dimensional (3D) human heart imaging at ultra-high fields is highly challenging due to respiratory and cardiac motion-induced artifacts as well as spatially heterogeneous B1+ profiles. In this study, we investigate the feasibility of applying 3D flip angle (FA) homogenization targeting the whole heart via static phase-only and dynamic kT-point in vivo parallel transmission at 7 T. 3D B1+ maps of the thorax were acquired under free breathing in eight subjects to compute parallel transmission pulses that improve excitation homogeneity in the human heart. To analyze the number of kT-points required, excitation homogeneity and radiofrequency (RF) power were compared using different regions of interest in six subjects with different body mass index (BMI) values of 20-34 kg/m2 for a wide range of regularization parameters. One subset of the optimized subject-specific pulses was applied in vivo on a 7 T scanner for six subjects in Cartesian 3D breath-hold scans as well as in two subjects in a radial phase-encoded 3D free-breathing scan. Across all subjects, 3-4 kT-points achieved a good tradeoff between RF power and nominal FA homogeneity. For subjects with a BMI in the normal range, the 4 kT-point pulses reliably improved the coefficient of variation by less than 10% compared with less than 25% achieved by static phase-only parallel transmission. in vivo measurements on a 7 T scanner validated the B1+ estimations and the pulse design, despite neglecting ΔB0 in the optimizations and Bloch simulations. This study demonstrates in vivo that kT-point pTx pulses are highly suitable for mitigating nominal FA heterogeneities across the entire 3D heart volume at 7 T. Furthermore, 3-4 kT-points demonstrate a practical tradeoff between nominal FA heterogeneity mitigation and RF power.


Asunto(s)
Corazón/diagnóstico por imagen , Imagenología Tridimensional , Adulto , Anisotropía , Simulación por Computador , Femenino , Humanos , Masculino , Ondas de Radio , Adulto Joven
15.
J Magn Reson ; 309: 106515, 2019 12.
Artículo en Inglés | MEDLINE | ID: mdl-31648131

RESUMEN

Accurate T2 mapping using multi-echo spin-echo is usually impaired by non-ideal refocusing due to B1+ inhomogeneities and slice profile effects. Incomplete refocusing gives rise to stimulated echo and so called "T1-mixing" and consequently a non-exponential signal decay. Here we present a time domain formula that incorporates all relaxation and pulse parameters and enables accurate and realistic modelling of the magnetization decay curve. By pulse parameters here we specifically mean the actual refocusing angle and axis, and phase angle of both the excitation and refocusing pulse. The method used for derivation comprises the so called Generating functions approach with subsequent back-transformation to the time domain. The proposed approach was validated by simulations using realistic RF pulse shapes as well as by comparison to phantom measurements. Excellent agreement between simulations and measurements underpin the validity of the presented approach. Conclusively, we here present a complete time domain formula ready to use for accurate T2 mapping with multi-echo spin-echo sequences.

17.
Chemistry ; 25(35): 8236-8239, 2019 Jun 21.
Artículo en Inglés | MEDLINE | ID: mdl-30990914

RESUMEN

Many smart magnetic resonance imaging (MRI) probes provide response to a biomarker based on modulation of their rotational correlation time. The magnitude of such MRI signal changes is highly dependent on the magnetic field and the response decreases dramatically at high fields (>2 T). To overcome the loss of efficiency of responsive probes at high field, with fast-field cycling magnetic resonance imaging (FFC-MRI) we exploit field-dependent information rather than the absolute difference in the relaxation rate measured in the absence and in the presence of the biomarker at a given imaging field. We report here the application of fast field-cycling techniques combined with the use of a molecular probe for the detection of Zn2+ to achieve 166 % MRI signal enhancement at 3 T, whereas the same agent provides no detectable response using conventional MRI. This approach can be generalized to any biomarker provided the detection is based on variation of the rotational motion of the probe.


Asunto(s)
Complejos de Coordinación/química , Gadolinio/química , Zinc/análisis , Biomarcadores/análisis , Técnicas Biosensibles/métodos , Complejos de Coordinación/síntesis química , Campos Electromagnéticos , Ligandos , Límite de Detección , Imagen por Resonancia Magnética/métodos , Sondas Moleculares/química , Albúmina Sérica Humana/química , Termodinámica
18.
Eur J Nutr ; 58(5): 1821-1827, 2019 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-29850990

RESUMEN

PURPOSE: Experimental investigations in rodents have contributed significantly to our current understanding of the potential importance of the gut microbiome and brain interactions for neurotransmitter expression, neurodevelopment, and behaviour. However, clinical evidence to support such interactions is still scarce. The present study used a double-blind, randomized, pre- and post-intervention assessment design to investigate the effects of a 4-week multi-strain probiotic administration on whole-brain functional and structural connectivity in healthy volunteers. METHODS: Forty-five healthy volunteers were recruited for this study and were divided equally into three groups (PRP: probiotic, PLP: placebo, and CON: control). All the participants underwent resting-state functional MRI and diffusion MRI brain scans twice during the course of study, at the beginning (time point 1) and after 4 weeks (time point 2). MRI data were acquired using a 3T whole-body MR system (Magnetom Skyra, Siemens, Germany). RESULTS: Functional connectivity (FC) changes were observed in the default mode network (DMN), salience network (SN), and middle and superior frontal gyrus network (MFGN) in the PRP group as compared to the PLP and CON groups. PRP group showed a significant decrease in FC in MFGN (in frontal pole and frontal medial cortex) and in DMN (in frontal lobe) as compared to CON and PLP groups, respectively. Further, significant increase in FC in SN (in cingulate gyrus and precuneus cortex) was also observed in PRP group as compared to CON group. The significance threshold was set to p < 0.05 FWE corrected. No significant structural differences were observed between the three groups. CONCLUSIONS: This work provides new insights into the role of a multi-strain probiotic administration in modulating the behaviour, which is reflected as changes in the FC in healthy volunteers. This study motivates future investigations into the role of probiotics in context of major depression and stress disorders.


Asunto(s)
Encéfalo/fisiología , Imagen por Resonancia Magnética/métodos , Probióticos/farmacología , Adulto , Método Doble Ciego , Femenino , Voluntarios Sanos , Humanos , Masculino , Probióticos/administración & dosificación , Valores de Referencia , Descanso , Adulto Joven
19.
Front Physiol ; 9: 1688, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-30538642

RESUMEN

A group of 23 healthy scanner naïve participants of a functional magnetic resonance imaging (fMRI) study with increased state anxiety exhibited 0.1 Hz oscillations in blood-oxygenation-level-dependent (BOLD) signals, heart rate (HR) beat-to-beat intervals (RRI) and respiration. The goal of the present paper is to explore slow oscillations in respiration and RRI and their phase-coupling by applying the dynamic "wave-by-wave" analysis. Five participants with either high or moderate levels of fMRI-related anxiety (age 23.8 ± 3.3y) were found with at least one bulk of consecutive breathing waves with a respiration rate between 6 to 9 breaths/min in a 5-min resting state. The following results were obtained: (i) Breathing oscillations with dominant frequencies at 0.1 Hz and 0.15 Hz displayed a 1:1 coupling with RRI. (ii) Inspiration time was significantly longer than expiration time. (iii) RRI minima (start of HR decrease) coincided with the early inspiration, and RRI maxima (start of HR increase) coincided with the late inspiration. (iv) RRI rhythm led over the respiratory rhythm. This phase-coupling pattern is quite contrary to typical respiratory sinus arrhythmia where HR increases during inspiration and decreases during expiration.

20.
PLoS One ; 13(11): e0206675, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-30475859

RESUMEN

Participation in magnetic resonance imaging (MRI) scanning is associated with increased anxiety, thus possibly impacting baseline recording for functional MRI studies. The goal of the paper is to elucidate the significant hemispheric asymmetry between blood-oxygenation-level-dependent (BOLD) signals from precentral gyrus (PCG) and insula in 23 healthy individuals without any former MRI experience recently published in a PLOSONE paper. In addition to BOLD signals state anxiety and heart rate variability (HRV) were analyzed in two resting state sessions (R1, R2). Phase-locking and time delays from BOLD signals were computed in the frequency band 0.07-0.13 Hz. Positive (pTD) and negative time delays (nTD) were found. The pTD characterize descending neural BOLD oscillations spreading from PCG to insula and nTD characterize ascending vascular BOLD oscillations related to blood flow in the middle cerebral artery. HRV power in two low frequency bands 0.06-0.1 Hz and 0.1-0.14 Hz was computed. Based on the anxiety change from R1 to R2, two groups were separated: one with a strong anxiety decline (large change group) and one with a moderate decline or even anxiety increase (small change group). A significant correlation was found only between the left-hemispheric time delay (pTD, nTD) and anxiety change, with a dominance of nTD in the large change group. The analysis of within-scanner HRV revealed a pronounced increase of low frequency power between both resting states, dominant in the band 0.06-0.1 Hz in the large change group and in the band 0.1-0.14 Hz in the small change group. These results suggest different mechanisms related to anxiety processing in healthy individuals. One mechanism (large anxiety change) could embrace an increase of blood circulation in the territory of the left middle cerebral artery (vascular BOLD) and another (small anxiety change) translates to rhythmic central commands (neural BOLD) in the frequency band 0.1-0.14 Hz.


Asunto(s)
Ansiedad/etiología , Ansiedad/fisiopatología , Corteza Cerebral/fisiopatología , Frecuencia Cardíaca , Imagen por Resonancia Magnética/psicología , Oxígeno/sangre , Adulto , Ansiedad/diagnóstico por imagen , Mapeo Encefálico , Corteza Cerebral/irrigación sanguínea , Corteza Cerebral/diagnóstico por imagen , Circulación Cerebrovascular , Femenino , Frecuencia Cardíaca/fisiología , Humanos , Imagen por Resonancia Magnética/efectos adversos , Masculino , Respiración , Descanso , Adulto Joven
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...