Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
Environ Sci Technol ; 54(11): 6900-6907, 2020 06 02.
Artículo en Inglés | MEDLINE | ID: mdl-32374592

RESUMEN

We have developed a new class of sodium carbonate/silicone composite sorbents that selectively capture carbon dioxide (CO2) and can purify biogas to natural gas pipeline-quality biomethane. These nontoxic composites can be three-dimensionally printed or extruded at low costs, can have high specific CO2 sorption rates (in excess of 5 µmol s-1 g-1 bar-1) and high selectivity due to their chemical mechanism, and can be regenerated with low-energy air stripping. Therefore, these composite sorbents combine the high selectivity of liquid sorbents with the high specific sorption rates and low regeneration energies found in many solid sorbents. We characterized these composite sorbents with X-ray computed tomography, scanning electron microscopy (SEM), and X-ray diffraction (XRD). Furthermore, we measured composite sorption capacities of up to 0.62 mol CO2 kg-1 and recorded breakthrough curves in a flow-through, fixed-bed reactor using both simulated biogas and locally sourced industrial biogas. Additional tests of the composite sorbent were carried out with pure CO2 in a sealed pressure drop apparatus. This experimental data was used to validate a numerical model of the setup and to simulate an industrial-scale biogas upgrading process. Finally, we performed a preliminary technoeconomic analysis for this upgrading process and found that this composite sorbent can upgrade biogas at a lower cost (∼$0.97 per GJ) than other currently implemented techniques.


Asunto(s)
Biocombustibles , Carbonatos , Dióxido de Carbono , Gas Natural
2.
Faraday Discuss ; 192: 271-281, 2016 10 20.
Artículo en Inglés | MEDLINE | ID: mdl-27504736

RESUMEN

Purpose-designed, water-lean solvents have been developed to improve the energy efficiency of CO2 capture from power plants, including CO2-binding organic liquids (CO2BOLs) and ionic liquids (ILs). Many of these solvents are highly viscous or change phases, posing challenges for conventional process equipment. Such problems can be overcome by encapsulation. Micro-Encapsulated CO2 Sorbents (MECS) consist of a CO2-absorbing solvent or slurry encased in spherical, CO2-permeable polymer shells. The resulting capsules have diameters in the range of 100-600 µm, greatly increasing the surface area and CO2 absorption rate of the encapsulated solvent. Encapsulating these new solvents requires careful selection of shell materials and fabrication techniques. We find several common classes of polymers are not compatible with MECS production, but we develop two custom formulations, a silicone and an acrylate, that show promise for encapsulating water-lean solvents. We make the first demonstration of an encapsulated IL for CO2 capture. The rate of CO2 absorption is enhanced by a factor of 3.5 compared to a liquid film, a value that can be improved by further development of shell materials and fabrication techniques.

3.
Nat Commun ; 6: 6124, 2015 Feb 05.
Artículo en Inglés | MEDLINE | ID: mdl-25652243

RESUMEN

Drawbacks of current carbon dioxide capture methods include corrosivity, evaporative losses and fouling. Separating the capture solvent from infrastructure and effluent gases via microencapsulation provides possible solutions to these issues. Here we report carbon capture materials that may enable low-cost and energy-efficient capture of carbon dioxide from flue gas. Polymer microcapsules composed of liquid carbonate cores and highly permeable silicone shells are produced by microfluidic assembly. This motif couples the capacity and selectivity of liquid sorbents with high surface area to facilitate rapid and controlled carbon dioxide uptake and release over repeated cycles. While mass transport across the capsule shell is slightly lower relative to neat liquid sorbents, the surface area enhancement gained via encapsulation provides an order-of-magnitude increase in carbon dioxide absorption rates for a given sorbent mass. The microcapsules are stable under typical industrial operating conditions and may be used in supported packing and fluidized beds for large-scale carbon capture.

4.
Acta Crystallogr C Struct Chem ; 70(Pt 2): 123-31, 2014 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-24508957

RESUMEN

An approach to catalyst design is presented in which local potential energy surface models are first built to elucidate design principles and then used to identify larger scaffold motifs that match the target geometries. Carbon sequestration via hydration is used as the model reaction, and three- and four-coordinate sp(2) or sp(3) nitrogen-ligand motifs are considered for Zn(II) metals. The comparison of binding, activation and product release energies over a large range of interaction distances and angles suggests that four-coordinate short Zn(II)-Nsp(3) bond distances favor a rapid turnover for CO2 hydration. This design strategy is then confirmed by computationally characterizing the reactivity of a known mimic over a range of metal-nitrogen bond lengths. A search of existing catalysts in a chemical database reveals structures that match the target geometry from model calculations, and subsequent calculations have identified these structures as potentially effective for CO2 hydration and sequestration.


Asunto(s)
Carbono/química , Compuestos Organometálicos/química , Zinc/química , Catálisis , Cristalografía por Rayos X , Ligandos , Modelos Moleculares , Estructura Molecular , Teoría Cuántica
5.
PLoS One ; 8(6): e66187, 2013.
Artículo en Inglés | MEDLINE | ID: mdl-23840420

RESUMEN

In nature, the zinc metalloenzyme carbonic anhydrase II (CAII) efficiently catalyzes the conversion of carbon dioxide (CO2) to bicarbonate under physiological conditions. Many research efforts have been directed towards the development of small molecule mimetics that can facilitate this process and thus have a beneficial environmental impact, but these efforts have met very limited success. Herein, we undertook quantum mechanical calculations of four mimetics, 1,5,9-triazacyclododedacane, 1,4,7,10-tetraazacyclododedacane, tris(4,5-dimethyl-2-imidazolyl)phosphine, and tris(2-benzimidazolylmethyl)amine, in their complexed form either with the Zn(2+) or the Co(2+) ion and studied their reaction coordinate for CO2 hydration. These calculations demonstrated that the ability of the complex to maintain a tetrahedral geometry and bind bicarbonate in a unidentate manner were vital for the hydration reaction to proceed favorably. Furthermore, these calculations show that the catalytic activity of the examined zinc complexes was insensitive to coordination states for zinc, while coordination states above four were found to have an unfavorable effect on product release for the cobalt counterparts.


Asunto(s)
Compuestos Aza/química , Bicarbonatos/síntesis química , Dióxido de Carbono/química , Cobalto/química , Complejos de Coordinación/química , Zinc/química , Biomimética , Catálisis , Compuestos Heterocíclicos/química , Modelos Químicos , Modelos Moleculares , Conformación Molecular , Oxidación-Reducción , Teoría Cuántica , Solventes/química , Termodinámica , Agua/química
6.
Environ Sci Technol ; 47(17): 10049-55, 2013 Sep 03.
Artículo en Inglés | MEDLINE | ID: mdl-23883067

RESUMEN

Zinc(II) cyclen, a small molecule mimic of the enzyme carbonic anhydrase, was evaluated under rigorous conditions resembling those in an industrial carbon capture process: high pH (>12), nearly saturated salt concentrations (45% K2CO3) and elevated temperatures (100-130 °C). We found that the catalytic activity of zinc cyclen increased with increasing temperature and pH and was retained after exposure to a 45% w/w K2CO3 solution at 130 °C for 6 days. However, high bicarbonate concentrations markedly reduced the activity of the catalyst. Our results establish a benchmark level of stability and provide qualitative insights for the design of improved small-molecule carbon capture catalysts.


Asunto(s)
Anhidrasas Carbónicas/química , Restauración y Remediación Ambiental/métodos , Compuestos Heterocíclicos/química , Compuestos de Zinc/química , Carbonatos/química , Catálisis , Ciclamas , Concentración de Iones de Hidrógeno , Percloratos/química , Potasio/química , Temperatura
7.
Proc Natl Acad Sci U S A ; 110(25): 10095-100, 2013 Jun 18.
Artículo en Inglés | MEDLINE | ID: mdl-23729814

RESUMEN

We experimentally demonstrate the direct coupling of silicate mineral dissolution with saline water electrolysis and H2 production to effect significant air CO2 absorption, chemical conversion, and storage in solution. In particular, we observed as much as a 10(5)-fold increase in OH(-) concentration (pH increase of up to 5.3 units) relative to experimental controls following the electrolysis of 0.25 M Na2SO4 solutions when the anode was encased in powdered silicate mineral, either wollastonite or an ultramafic mineral. After electrolysis, full equilibration of the alkalized solution with air led to a significant pH reduction and as much as a 45-fold increase in dissolved inorganic carbon concentration. This demonstrated significant spontaneous air CO2 capture, chemical conversion, and storage as a bicarbonate, predominantly as NaHCO3. The excess OH(-) initially formed in these experiments apparently resulted via neutralization of the anolyte acid, H2SO4, by reaction with the base mineral silicate at the anode, producing mineral sulfate and silica. This allowed the NaOH, normally generated at the cathode, to go unneutralized and to accumulate in the bulk electrolyte, ultimately reacting with atmospheric CO2 to form dissolved bicarbonate. Using nongrid or nonpeak renewable electricity, optimized systems at large scale might allow relatively high-capacity, energy-efficient (<300 kJ/mol of CO2 captured), and inexpensive (<$100 per tonne of CO2 mitigated) removal of excess air CO2 with production of carbon-negative H2. Furthermore, when added to the ocean, the produced hydroxide and/or (bi)carbonate could be useful in reducing sea-to-air CO2 emissions and in neutralizing or offsetting the effects of ongoing ocean acidification.


Asunto(s)
Dióxido de Carbono/química , Secuestro de Carbono , Electrólisis/métodos , Hidrógeno/química , Silicatos/química , Cloruro de Sodio/química , Ácidos/química , Bicarbonatos/química , Compuestos de Calcio/química , Cloro/química , Electrólitos/química , Calentamiento Global , Minerales/química , Océanos y Mares , Agua de Mar/química , Termodinámica
8.
Nat Commun ; 4: 1694, 2013.
Artículo en Inglés | MEDLINE | ID: mdl-23591861

RESUMEN

Methane (CH4) is an important greenhouse gas, second only to CO2, and is emitted into the atmosphere at different concentrations from a variety of sources. However, unlike CO2, which has a quadrupole moment and can be captured both physically and chemically in a variety of solvents and porous solids, methane is completely non-polar and interacts very weakly with most materials. Thus, methane capture poses a challenge that can only be addressed through extensive material screening and ingenious molecular-level designs. Here we report systematic in silico studies on the methane capture effectiveness of two different materials systems, that is, liquid solvents (including ionic liquids) and nanoporous zeolites. Although none of the liquid solvents appears effective as methane sorbents, systematic screening of over 87,000 zeolite structures led to the discovery of a handful of candidates that have sufficient methane sorption capacity as well as appropriate CH4/CO2 and/or CH4/N2 selectivity to be technologically promising.

9.
J Chem Theory Comput ; 9(3): 1320-7, 2013 Mar 12.
Artículo en Inglés | MEDLINE | ID: mdl-26587594

RESUMEN

Molecular dynamics simulations and quantum-mechanical calculations were performed to characterize a supramolecular tris(imidazolyl) calix[6]arene Zn(2+) aqua complex, as a biomimetic model for the catalyzed hydration of carbon dioxide to bicarbonate, H2O + CO2 → H(+) + HCO3(-). On the basis of potential-of-mean-force (PMF) calculations, stable conformations had distorted 3-fold symmetry and supported either one or zero encapsulated water molecules. The conformation with an encapsulated water molecule is calculated to be lower in free energy than the conformation with an empty cavity (ΔG = 1.2 kcal/mol) and is the calculated free-energy minimum in solution. CO2 molecule partitioning into the cavity is shown to be very facile, proceeding with a barrier of 1.6 kcal/mol from a weak encounter complex which stabilizes the species by about 1.0 kcal/mol. The stabilization energy of CO2 is calculated to be larger than that of H2O (ΔΔG = 1.4 kcal/mol), suggesting that the complex will preferentially encapsulate CO2 in solution. In contrast, the PMF for a bicarbonate anion entering the cavity is calculated to be repulsive in all nonbonding regions of the cavity, due to the diameter of the calix[6]arene walls. Geometry optimization of the Zn-bound hydroxide complex with an encapsulated CO2 molecule showed that multiple noncovalent interactions direct the reactants into optimal position for nucleophilic addition to occur. The calixarene complex is a structural mimic of the hydrophilic/hydrophobic divide in the enzyme, providing a functional effect for CO2 addition in the catalytic cycle. The results show that Zn-binding calix[6]arene scaffolds can be potential synthetic biomimetics for CO2 hydration catalysis, both in terms of preferentially encapsulating CO2 from solution and by spatially fixing the reactive species inside the cavity.

10.
Inorg Chem ; 51(12): 6803-12, 2012 Jun 18.
Artículo en Inglés | MEDLINE | ID: mdl-22671132

RESUMEN

A panel of five zinc-chelated aza-macrocycle ligands and their ability to catalyze the hydration of carbon dioxide to bicarbonate, H(2)O + CO(2) → H(+) + HCO(3)(­), was investigated using quantum-mechanical methods and stopped-flow experiments. The key intermediates in the reaction coordinate were optimized using the M06-2X density functional with aug-cc-pVTZ basis set. Activation energies for the first step in the catalytic cycle, nucleophilic CO(2) addition, were calculated from gas-phase optimized transition-state geometries. The computationally derived trend in activation energies was found to not correspond with the experimentally observed rates. However, activation energies for the second, bicarbonate release step, which were estimated using calculated bond dissociation energies, provided good agreement with the observed trend in rate constants. Thus, the joint theoretical and experimental results provide evidence that bicarbonate release, not CO(2) addition, may be the rate-limiting step in CO(2) hydration by zinc complexes of aza-macrocyclic ligands. pH-independent rate constants were found to increase with decreasing Lewis acidity of the ligand-Zn complex, and the trend in rate constants was correlated with molecular properties of the ligands. It is suggested that tuning catalytic efficiency through the first coordination shell of Zn(2+) ligands is predominantly a balance between increasing charge-donating character of the ligand and maintaining the catalytically relevant pK(a) below the operating pH.


Asunto(s)
Compuestos Aza/química , Materiales Biomiméticos/química , Compuestos Macrocíclicos/química , Compuestos Organometálicos/química , Teoría Cuántica , Zinc/química , Bicarbonatos/síntesis química , Bicarbonatos/química , Materiales Biomiméticos/metabolismo , Dióxido de Carbono/química , Anhidrasas Carbónicas/química , Anhidrasas Carbónicas/metabolismo , Catálisis , Ligandos , Modelos Moleculares , Estructura Molecular , Peso Molecular , Compuestos Organometálicos/síntesis química
11.
Environ Sci Technol ; 46(12): 6455-69, 2012 Jun 19.
Artículo en Inglés | MEDLINE | ID: mdl-22594483

RESUMEN

Methane is the most important greenhouse gas after carbon dioxide, with particular influence on near-term climate change. It poses increasing risk in the future from both direct anthropogenic sources and potential rapid release from the Arctic. A range of mitigation (emissions control) technologies have been developed for anthropogenic sources that can be developed for further application, including to Arctic sources. Significant gaps in understanding remain of the mechanisms, magnitude, and likelihood of rapid methane release from the Arctic. Methane may be released by several pathways, including lakes, wetlands, and oceans, and may be either uniform over large areas or concentrated in patches. Across Arctic sources, bubbles originating in the sediment are the most important mechanism for methane to reach the atmosphere. Most known technologies operate on confined gas streams of 0.1% methane or more, and may be applicable to limited Arctic sources where methane is concentrated in pockets. However, some mitigation strategies developed for rice paddies and agricultural soils are promising for Arctic wetlands and thawing permafrost. Other mitigation strategies specific to the Arctic have been proposed but have yet to be studied. Overall, we identify four avenues of research and development that can serve the dual purposes of addressing current methane sources and potential Arctic sources: (1) methane release detection and quantification, (2) mitigation units for small and remote methane streams, (3) mitigation methods for dilute (<1000 ppm) methane streams, and (4) understanding methanotroph and methanogen ecology.


Asunto(s)
Metano/aislamiento & purificación , Regiones Árticas , Funciones de Verosimilitud , Metano/química , Humedales
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...