RESUMEN
Fatty acid binding protein 3 (FABP3) is expressed both in tumor cells and in the tumor vasculature, making it a potential target for medical imaging and therapy. In this study, we aimed to radiolabel a CooP peptide with a free amino and thiol group, and evaluate the radiolabeled product [18F]FNA-N-CooP for imaging FABP3 expression in breast cancer brain metastases by positron emission tomography. [18F]FNA-N-CooP was prepared by highly chemoselective N-acylation and characterized using different chemical approaches. We validated its binding to the target using in vitro tissue section autoradiography and performed stability tests in vitro and in vivo. [18F]FNA-N-CooP was successfully synthesized in 16.8% decay-corrected radiochemical yield with high radiochemical purity (98.5%). It exhibited heterogeneous binding on brain metastasis tissue sections from a patient with breast cancer, with foci of radioactivity binding corresponding to FABP3 positivity. Furthermore, the tracer binding was reduced by 55% in the presence of nonradioactive FNA-N-CooP a blocker, indicating specific tracer binding and that FABP3 is a viable target for [18F]FNA-N-CooP. Favorably, the tracer did not bind to necrotic tumor tissue. However, [18F]FNA-N-CooP displayed limited stability both in vitro in mouse plasma or human serum and in vivo in mouse, therefore further studies are needed to improve the stability [18F]FNA-N-CooP to be used for in vivo applications.
Asunto(s)
Neoplasias Encefálicas , Neoplasias de la Mama , Proteína 3 de Unión a Ácidos Grasos , Radioisótopos de Flúor , Tomografía de Emisión de Positrones , Radiofármacos , Animales , Humanos , Femenino , Ratones , Neoplasias de la Mama/diagnóstico por imagen , Neoplasias de la Mama/patología , Neoplasias de la Mama/metabolismo , Tomografía de Emisión de Positrones/métodos , Proteína 3 de Unión a Ácidos Grasos/metabolismo , Neoplasias Encefálicas/diagnóstico por imagen , Neoplasias Encefálicas/metabolismo , Neoplasias Encefálicas/patología , Radioisótopos de Flúor/química , Radiofármacos/farmacocinética , Radiofármacos/química , Línea Celular Tumoral , Péptidos/química , Distribución Tisular , Compuestos de Sulfhidrilo/química , Ratones DesnudosRESUMEN
BACKGROUND: Fatty acid binding protein 3 (FABP3) is a target with clinical relevance and the peptide ligand ACooP has been identified for FABP3 targeting. ACooP is a linear decapeptide containing a free amino and thiol group, which provides opportunities for conjugation. This work is to develop methods for radiolabeling of ACooP with fluorine-18 (18F) for positron emission tomography (PET) applications, and evaluate the binding of the radiolabeled ACooP in human tumor tissue sections with high FABP3 expression. RESULTS: The prosthetic compound 6-[18F]fluoronicotinic acid 4-nitrophenyl ester was conveniently prepared with an on-resin 18F-fluorination in 29.9% radiochemical yield and 96.6% radiochemical purity. Interestingly, 6-[18F]fluoronicotinic acid 4-nitrophenyl ester conjugated to ACooP exclusively by S-acylation instead of the expected N-acylation, and the chemical identity of the product [18F]FNA-S-ACooP was confirmed. In the in vitro binding experiments, [18F]FNA-S-ACooP exhibited heterogeneous and high focal binding in malignant tissue sections, where we also observed abundant FABP3 positivity by immunofluorescence staining. Blocking study further confirmed the [18F]FNA-S-ACooP binding specificity. CONCLUSIONS: FABP3 targeted ACooP peptide was successfully radiolabeled by S-acylation using 6-[18F]fluoronicotinic acid 4-nitrophenyl ester as the prosthetic compound. The tissue binding and blocking studies together with anti-FABP3 immunostaining confirmed [18F]FNA-S-ACooP binding specificity. Further preclinical studies of [18F]FNA-S-ACooP are warranted.
RESUMEN
Pretargeted concept in positron emission tomography (PET) together with bioorthogonal chemistry is an elegant solution to study processes with slow pharmacokinetics by utilizing radiotracers labeled with short-lived radionuclides. Namely, radiotracers based on tetrazine ligation with trans-cyclooctene (TCO) via the inverse electron demand Diels-Alder (IEDDA) reaction have become a state-of-the-art for the pretargeted PET imaging. For radiolabeling of tetrazine scaffolds, indirect radiofluorination methods are often preferred, as tetrazines are vulnerable to harsh conditions typically necessary for the direct radiofluorination. 18F-Fluoroglycosylation is an indirect radiofluorination method, which allows the introduction of a widely accessible glucose analog 2-[18F]fluoro-2-deoxy-d-glucose ([18F]FDG) to aminooxy-functionalized precursors via oxime formation. Here, we report the biological evaluation of [18F]FDG-Tz as a tracer for pretargeted PET imaging of TCO-functionalized molecular spherical nucleic acids (MSNA) against human epidermal growth factor receptor 2 (HER2) mRNA. The oxime ether formation between [18F]FDG and tetrazine oxyamine resulted in [18F]FDG-Tz with high radiochemical purity (>99%) and moderate yields (6.5 ± 3.6%, n = 5). Biological evaluation of [18F]FDG-Tz in healthy mice indicated favorable pharmacokinetics with quick blood clearance, urinary excretion as the main elimination route, and the absence of GLUT1 transportation. The successful pretargeted experiments with TCO-functionalized MSNA revealed higher tumor uptake compared to preclicked MSNA in HER2-expressing human breast cancer xenograft-bearing mice.
RESUMEN
18F-Labeled [60]fullerene-based molecular spherical nucleic acids (MSNAs), consisting of a human epidermal growth factor receptor 2 (HER2) mRNA antisense oligonucleotide sequence with a native phosphodiester and phosphorothioate backbone, were synthesized, site-specifically labeled with a positron emitting fluorine-18 and intravenously administrated via tail vein to HER2 expressing HCC1954 tumor-bearing mice. The biodistribution of the MSNAs was monitored in vivo by positron emission tomography/computed tomography (PET/CT) imaging. MSNA with a native phosphodiester backbone (MSNA-PO) was prone to rapid nuclease-mediated degradation, whereas the corresponding phosphorothioate analogue (MSNA-PS) with improved enzymatic stability showed an interesting biodistribution profile in vivo. One hour after the injection, majority of the radioactivity was observed in spleen and liver but also in blood with an average tumor-to-muscle ratio of 2. The prolonged radioactivity in blood circulation may open possibilities to the targeted delivery of the MSNAs.
Asunto(s)
Fulerenos , Neoplasias , Ácidos Nucleicos , Ratones , Humanos , Animales , Tomografía Computarizada por Tomografía de Emisión de Positrones/métodos , Distribución Tisular , Tomografía de Emisión de Positrones/métodos , Neoplasias/diagnóstico por imagen , Radioisótopos de Flúor , Línea Celular TumoralRESUMEN
Click chemistry reactions, such as the tetrazine ligation, based on the inverse-electron demand Diels-Alder (IEDDA), are chemoselective cycloaddition reactions widely used for chemical modifications and synthesis of biomolecule-based radiopharmaceuticals for positron emission tomography (PET). The reactions have potential also for pretargeted PET imaging. When used as a bioconjugation method in production of biomolecule-based radiopharmaceuticals, IEDDA-based tetrazine ligation has one significant drawback, namely the formation of a mixture comprising reduced metastable dihydropyridazines (DHPs) and oxidized cycloadducts. Conversion of the reduced DHPs to stable pyridazines requires oxidation, which is typically achieved by using oxidants or by photo-irradiated air-oxidation, both methods requiring added reagents or reaction times of several hours, not compatible with short-lived radionuclides. Here we report a mild, rapid, and catalyst-free conversion of the DHPs to pyridazines. In this study, a model peptide Tyr3-octreotide (TOC) was modified with polyethylene glycol (PEG) linkers and with trans-cyclooctenes (TCOs) for rapid IEDDA-mediated radiolabeling. Fluorine-18-labelled alkylammoniomethyltrifluoroborate ([18F]AmBF3) tetrazines were conjugated to the TCO-TOC analogs at room temperature for rapid synthesis of PET imaging agent candidates. The formed DHPs were successfully converted to the oxidized form, after heating the radiolabelled bioconjugates in aqueous solution (≥95% water) at 60 °C for a minimum of 10 minutes in the presence of air, resulting in one-pot back-to-back IEDDA reaction and DHP conversion. The water content of the reaction mixture was to be found critical for the coversion. Our finding offers a straightforward method for conversion of the metastable DHPs from the IEDDA-based tetrazine ligation to stable, oxidized pyridazines. The method is especially suitable for applications requiring rapid conversion.
RESUMEN
Integrins are cell surface receptors involved in multiple functions vital for cellular proliferation. Various tumor cells overexpress αß-integrins, making them ideal biomarkers for diagnostic imaging and tumor-targeted drug delivery. LXY30 is a peptide that can specifically recognize and interact with the integrin α3ß1, a molecule overexpressed in breast, ovarian and colorectal cancer. Hepatitis E virus nanoparticles (HEVNPs) are virus-like particles that have been investigated as drug delivery agents for the targeted delivery of nucleic acids and small proteins. HEVNPs can be a theranostic platform for monitoring and evaluating tumor-targeted therapies if tagged with a suitable diagnostic marker. Herein, we describe the radiolabeling and biological evaluation of integrin α3ß1-targeted HEVNPs. HEVNPs were conjugated with DOTA and radiolabeled with gallium-68 (t1/2 = 67.7 min), a short-lived positron emitter used in positron emission tomography (PET). The synthesized [68Ga]Ga-DOTA-HEVNPs were used to evaluate the efficacy of conjugated LXY30 peptide to improve HEVNPs binding and internalization to integrin α3ß1 expressing human colorectal HCT 116 cells. In vivo tumor accumulation of [68Ga]Ga-DOTA-HEVNP-LXY30 was evaluated in HCT 116 colorectal tumor-bearing mice. [68Ga]Ga-DOTA-HEVNP-LXY30 and non-targeted [68Ga]Ga-DOTA-HEVNP were radiolabeled with radiochemical yields (RCY) of 67.9 ± 3.3% and 73.7 ± 9.8%, respectively. [68Ga]Ga-DOTA-HEVNP-LXY30 exhibited significantly higher internalization in HCT 116 cells than the non-targeted [68Ga]Ga-DOTA-HEVNPs (21.0 ± 0.7% vs. 10.5 ± 0.3% at 3 h, ****P<0.0001). After intravenous administration to mice, accumulation of [68Ga]Ga-DOTA-HEVNP-LXY30 to HCT 116 xenograft tumors was at its highest rate of 0.8 ± 0.4%ID/g at 60 min. [68Ga]Ga-DOTA-HEVNP-LXY30 accumulated mainly in the liver and spleen (39.8 ± 13.0%%ID/g and 24.6 ± 24.1%ID/g, respectively). Despite the low targeting efficiency in vivo, we demonstrated that [68Ga]Ga-DOTA-HEVNP is a promising diagnostic platform for quantitative analysis of HEVNP distribution in vivo. This nanosystem can be utilized in future studies assessing the success of further engineered HEVNP structures with optimized targeting efficiency in vivo.
Asunto(s)
Neoplasias Colorrectales , Radioisótopos de Galio , Integrina alfa3beta1 , Radiofármacos , Animales , Humanos , Ratones , Neoplasias Colorrectales/diagnóstico por imagen , Integrina alfa3beta1/metabolismo , Péptidos/química , Tomografía de Emisión de Positrones/métodos , Radiofármacos/química , Células HCT116RESUMEN
Radiochromic films are used as position-sensitive dose meters in e.g. medical physics and radiation processing. The currently available films like those based on lithium-10,12-pentacosdiynoate or leucomalachite green are either toxic or non-reusable, or both. There is thus a great need for a sustainable solution for radiochromic detection. In the present work, we present a suitable candidate: hackmanite with the general formula Na8Al6Si6O24(Cl,S)2. This material is known as a natural intelligent material capable of changing color when exposed to ultraviolet radiation or X-rays. Here, we show for the first time that hackmanites are also radiochromic when exposed to alpha particles, beta particles (positrons) or gamma radiation. Combining experimental and computational data we elucidate the mechanism of gamma-induced radiochromism in hackmanites. We show that hackmanites can be used for gamma dose mapping in high dose applications as well as a memory material that has the one-of-a-kind ability to remember earlier gamma exposure. In addition to satisfying the requirements of sustainability, hackmanites are non-toxic and the films made of hackmanite are reusable thus showing great potential to replace the currently available radiochromic films.
Asunto(s)
Dosimetría por Película , Rayos Ultravioleta , Rayos gamma , Rayos XRESUMEN
Targeted delivery of diagnostics and therapeutics offers essential advantages over nontargeted systemic delivery. These include the reduction of toxicity, the ability to reach sites beyond biological barriers, and the delivery of higher cargo concentrations to diseased sites. Virus-like particles (VLPs) can efficiently be used for targeted delivery purposes. VLPs are derived from the coat proteins of viral capsids. They are self-assembled, biodegradable, and homogeneously distributed. In this study, hepatitis E virus (HEV) VLP derivatives, hepatitis E virus nanoparticles (HEVNPs), were radiolabeled with gallium-68, and consequently, the biodistribution of the labeled [68Ga]Ga-DOTA-HEVNPs was studied in mice. The results indicated that [68Ga]Ga-DOTA-HEVNPs can be considered as promising theranostic nanocarriers, especially for hepatocyte-targeting therapies.
Asunto(s)
Virus de la Hepatitis E , Nanopartículas , Animales , Radioisótopos de Galio , Ratones , Tomografía de Emisión de Positrones/métodos , Distribución TisularRESUMEN
Radiolabeled peptides have emerged as highly specific agents for targeting receptors expressed in tumors for therapeutic and diagnostic purposes. Peptides developed for positron emission tomography (PET) are typically radiolabeled using prosthetic groups or bifunctional chelators for fast "kit-like" incorporation of the radionuclide into the structure. A novel [18F]alkylammoniomethyltrifluoroborate ([18F]AmBF3) tetrazine (Tz), [18F]AmBF3-Tz, was developed for the [18F]fluorination of trans-cyclooctene (TCO)-modified biomolecules using Tyr3-octreotides (TOCs) as model peptides. [18F]AmBF3-Tz (Am = 15.4 ± 9.2 GBq/µmol, n = 14) was evaluated in healthy mice by ex vivo biodistribution and PET/computed tomography (CT), where the radiolabel in the prosthetic group was found stable in vivo, indicated by the low bone uptake in tibia (0.4 ± 0.1% ID/g, t = 270 min). TCO-TOCs tailored with polyethylene glycol (PEG) linkers were radiolabeled with [18F]AmBF3-Tz, forming two new tracers, [18F]AmBF3-PEG4-TOC (Am = 2.8 ± 1.8 GBq/µmol, n = 3) and [18F]AmBF3-PEG7-TOC (Am of 6.0 ± 3.4 GBq/µmol, n = 13), which were evaluated by cell uptake studies and ex vivo biodistribution in subcutaneous AR42J rat pancreatic carcinoma tumor-bearing nude mice. The tracer demonstrating superior behavior ex vivo, the [18F]AmBF3-PEG7-TOC, was further evaluated with PET/CT, where the tracer provided clear tumor visualization (SUVbaseline = 1.01 ± 0.07, vs SUVblocked = 0.76 ± 0.04) at 25 min post injection. The novel AmBF3-Tz demonstrated that it offers potential as a prosthetic group for rapid radiolabeling of biomolecules in mild conditions using bioorthogonal chemistry.
Asunto(s)
Compuestos Heterocíclicos , Octreótido , Animales , Línea Celular Tumoral , Radioisótopos de Flúor/química , Ratones , Ratones Desnudos , Neoplasias Pancreáticas , Polietilenglicoles , Tomografía Computarizada por Tomografía de Emisión de Positrones , Tomografía de Emisión de Positrones/métodos , Radiofármacos/química , Ratas , Distribución Tisular , Neoplasias PancreáticasRESUMEN
Pretargeted PET imaging allows the use of radiotracers labeled with short-living PET radionuclides for tracing drugs with slow pharmacokinetics. Recently, especially methods based on bioorthogonal chemistry have been under intensive investigation for pretargeted PET imaging. The pharmacokinetics of the radiotracer is one of the factors that determine the success of the pretargeted strategy. Here, we report synthesis and biological evaluation of two 68Ga-labeled tetrazine (Tz)-based radiotracers, [68Ga]Ga-HBED-CC-PEG4-Tz ([68Ga]4) and [68Ga]Ga-DOTA-PEG4-Tz ([68Ga]6), aiming for development of new tracer candidates for pretargeted PET imaging based on the inverse electron demand Diels-Alder (IEDDA) ligation between a tetrazine and a strained alkene, such as trans-cyclooctene (TCO). Excellent radiochemical yield (RCY) was obtained for [68Ga]4 (RCY > 96%) and slightly lower for [68Ga]6 (RCY > 88%). Radiolabeling of HBED-CC-Tz proved to be faster and more efficient under milder conditions compared to the DOTA analogue. The two tracers exhibited excellent radiolabel stability both in vitro and in vivo. Moreover, [68Ga]4 was successfully used for radiolabeling two different TCO-functionalized nanoparticles in vitro: Hepatitis E virus nanoparticles (HEVNPs) and porous silicon nanoparticles (PSiNPs).
Asunto(s)
Radioisótopos de Galio , Compuestos Heterocíclicos , Distribución Tisular , Radiofármacos/farmacocinética , Radioquímica , Tomografía de Emisión de Positrones/métodosRESUMEN
The recent advances in the production of engineered antibodies have facilitated the development and application of tailored, target-specific antibodies. Positron emission tomography (PET) of these antibody-based drug candidates can help to better understand their in vivo behavior. In this study, we report an in vivo proof-of-concept pretargeted immuno-PET study where we compare a pretargeting vs targeted approach using a new 89Zr-labeled tetrazine as a bio-orthogonal ligand in an inverse electron demand Diels-Alder (IEDDA) in vivo click reaction. A CD44v6-selective chimeric monoclonal U36 was selected as the targeting antibody because it has potential in immuno-PET imaging of head-and-neck squamous cell carcinoma (HNSCC). Zirconium-89 (t1/2 = 78.41 h) was selected as the radionuclide of choice to be able to make a head-to-head comparison of the pretargeted and targeted approaches. [89Zr]Zr-DFO-PEG5-Tz ([89Zr]Zr-3) was synthesized and used in pretargeted PET imaging of HNSCC xenografts (VU-SCC-OE) at 24 and 48 h after administration of a trans-cyclooctene (TCO)-functionalized U36. The pretargeted approach resulted in lower absolute tumor uptake than the targeted approach (1.5 ± 0.2 vs 17.1 ± 3.0% ID/g at 72 h p.i. U36) but with comparable tumor-to-non-target tissue ratios and significantly lower absorbed doses. In conclusion, anti-CD44v6 monoclonal antibody U36 was successfully used for 89Zr-immuno-PET imaging of HNSCC xenograft tumors using both a targeted and pretargeted approach. The results not only support the utility of the pretargeted approach in immuno-PET imaging but also demonstrate the challenges in achieving optimal in vivo IEDDA reaction efficiencies in relation to antibody pharmacokinetics.
Asunto(s)
Neoplasias de Cabeza y Cuello , Tomografía de Emisión de Positrones , Anticuerpos Monoclonales/farmacocinética , Línea Celular Tumoral , Neoplasias de Cabeza y Cuello/diagnóstico por imagen , Humanos , Tomografía de Emisión de Positrones/métodos , Carcinoma de Células Escamosas de Cabeza y Cuello/diagnóstico por imagen , CirconioRESUMEN
Metastatic melanoma can be difficult to detect until at the advanced state that decreases the survival rate of patients. Several FDA-approved BRAF inhibitors have been used for treatment of metastatic melanoma, but overall therapeutic efficacy has been limited. Lutetium-177 (177 Lu) enables simultaneous tracking of tracer accumulation with single-photon emission computed tomography and radiotherapy. Therefore, the codelivery of 177 Lu alongside chemotherapeutic agents using nanoparticles (NPs) might improve the therapeutic outcome in metastatic melanoma. Cellulose nanocrystals (CNC NPs) can particularly deliver payloads to lung capillaries in vivo. Herein, 177 Lu-labeled CNC NPs loaded with vemurafenib ([177 Lu]Lu-CNC-V NPs) is developed and the therapeutic effect in BRAF V600E mutation-harboring YUMM1.G1 murine model of lung metastatic melanoma is investigated. The [177 Lu]Lu-CNC-V NPs demonstrate favorable radiolabel stability, drug release profile, cellular uptake, and cell growth inhibition in vitro. In vivo biodistribution reveals significant retention of the [177 Lu]Lu-CNC-V NPs in the lung, liver, and spleen. Ultimately, the median survival time of animals is doubly increased after treatment with [177 Lu]Lu-CNC-V NPs compared to control groups. The enhanced therapeutic efficacy of [177 Lu]Lu-CNC-V NPs in the lung metastatic melanoma animal model provides convincing evidence for the potential of clinical translation for theranostic CNC NP-based drug delivery systems after intravenous administration.
Asunto(s)
Melanoma , Nanopartículas , Animales , Línea Celular Tumoral , Celulosa , Sistemas de Liberación de Medicamentos , Humanos , Melanoma/tratamiento farmacológico , Ratones , Medicina de Precisión , Distribución TisularRESUMEN
In the recent years, progress in nanotechnology has significantly contributed to the development of novel pharmaceutical formulations to overcome the drawbacks of conventional treatments and improve the therapeutic outcome in many diseases, especially cancer. Nanoparticle vectors have demonstrated the potential to concomitantly deliver diagnostic and therapeutic payloads to diseased tissue. Due to their special physical and chemical properties, the characteristics and function of nanoparticles are tunable based on biological molecular targets and specific desired features (e.g., surface chemistry and diagnostic radioisotope labeling). Within the past decade, several theranostic nanoparticles have been developed as a multifunctional nanosystems which combine the diagnostic and therapeutic functionalities into a single drug delivery platform. Theranostic nanosystems can provide useful information on a real-time systemic distribution of the developed nanosystem and simultaneously transport the therapeutic payload. In general, the diagnostic functionality of theranostic nanoparticles can be achieved through labeling gamma-emitted radioactive isotopes on the surface of nanoparticles which facilitates noninvasive detection using nuclear molecular imaging techniques, such as positron emission tomography (PET) and single-photon emission computed tomography (SPECT), meanwhile, the therapeutic effect arises from the potent drug released from the nanoparticle. Moreover, some radioisotopes can concurrently emit both gamma radiation and high-energy particles (e.g., alpha, beta, and Auger electrons), prompting the use either alone for radiotheranostics or synergistically with chemotherapy. This chapter provides an overview of the fundamentals of radiochemistry and relevant radiolabeling strategies for theranostic nanosystem development as well as the methods for the preclinical evaluation of radiolabeled nanoparticles. Furthermore, preclinical case studies of recently developed theranostic nanosystems will be highlighted.
Asunto(s)
Nanopartículas , Medicina de Precisión , Tomografía de Emisión de Positrones , Radiofármacos , Tomografía Computarizada de Emisión de Fotón ÚnicoRESUMEN
Boron neutron capture therapy (BNCT) is a noninvasive binary therapeutic modality applicable to the treatment of cancers. While BNCT offers a tumor-targeting selectivity that is difficult to match by other means, the last obstacles preventing the full harness of this potential come in the form of the suboptimal boron delivery strategies presently used in the clinics. To address these challenges, we have developed delivery agents that target the glucose transporter GLUT1. Here, we present the chemical synthesis of a number of ortho-carboranylmethyl-substituted glucoconjugates and the biological assessment of all positional isomers. Altogether, the study provides protocols for the synthesis and structural characterization of such glucoconjugates and insights into their essential properties, for example, cytotoxicity, GLUT1-affinity, metabolism, and boron delivery capacity. In addition to solidifying the biochemical foundations of a successful GLUT1-targeting approach to BNCT, we identify the most promising modification sites in d-glucose, which are critical in order to further develop this strategy toward clinical use.
Asunto(s)
Boro/administración & dosificación , Boro/química , Neoplasias Encefálicas/radioterapia , Transportador de Glucosa de Tipo 1/metabolismo , Compuestos de Boro/administración & dosificación , Compuestos de Boro/química , Terapia por Captura de Neutrón de Boro/métodos , Línea Celular Tumoral , Glucosa/metabolismo , HumanosRESUMEN
Porous silicon (PSi) is a biocompatible and biodegradable material, which can be utilized in biomedical applications. It has several favorable properties, which makes it an excellent material for building engineered nanosystems for drug delivery and diagnostic purposes. One significant hurdle for commercial applications of PSi is the lack of industrial scale production of nanosized PSi particles. Here, we report a novel two-step production method for PSi nanoparticles. The method is based on centrifuge chemical vapor deposition (cCVD) of elemental silicon in an industrial scale reactor followed by electrochemical post-processing to porous particles. Physical properties, biocompatibility and in vivo biodistribution of the cCVD produced nanoparticles were investigated and compared to PSi nanoparticles conventionally produced from silicon wafers by pulse electrochemical etching. Our results demonstrate that the cCVD production provides PSi nanoparticles with comparable physical and biological quality to the conventional method. This method may circumvent several limitations of the conventional method such as the requirements for high purity monocrystalline silicon substrates as starting material and the material losses during the top-down milling process of the pulse-etched films to porous nanoparticles. However, the electroless etching required for the porosification of cCVD-produced nanoparticles limited control over the pore size, but is amenable for scaling of the production to industrial requirements.
Asunto(s)
Portadores de Fármacos/farmacocinética , Composición de Medicamentos/métodos , Nanopartículas/toxicidad , Radiofármacos/administración & dosificación , Silicio/farmacocinética , Animales , Supervivencia Celular/efectos de los fármacos , Centrifugación , Portadores de Fármacos/administración & dosificación , Portadores de Fármacos/química , Portadores de Fármacos/toxicidad , Femenino , Radioisótopos de Indio/administración & dosificación , Inyecciones Intravenosas , Ratones , Modelos Animales , Nanopartículas/administración & dosificación , Nanopartículas/química , Porosidad , Células RAW 264.7 , Silicio/administración & dosificación , Silicio/química , Silicio/toxicidad , Distribución Tisular , Pruebas de Toxicidad AgudaRESUMEN
Boron neutron capture therapy (BNCT) for cancer is on the rise worldwide due to recent developments of in-hospital neutron accelerators which are expected to revolutionize patient treatments. There is an urgent need for improved boron delivery agents, and herein we have focused on studying the biochemical foundations upon which a successful GLUT1-targeting strategy to BNCT could be based. By combining synthesis and molecular modeling with affinity and cytotoxicity studies, we unravel the mechanisms behind the considerable potential of appropriately designed glucoconjugates as boron delivery agents for BNCT. In addition to addressing the biochemical premises of the approach in detail, we report on a hit glucoconjugate which displays good cytocompatibility, aqueous solubility, high transporter affinity, and, crucially, an exceptional boron delivery capacity in the in vitro assessment thereby pointing toward the significant potential embedded in this approach.
Asunto(s)
Terapia por Captura de Neutrón de Boro/métodos , Boro/administración & dosificación , Portadores de Fármacos/efectos de la radiación , Glucosa/efectos de la radiación , Isótopos/administración & dosificación , Neoplasias/radioterapia , Boro/farmacocinética , Línea Celular Tumoral , Portadores de Fármacos/síntesis química , Portadores de Fármacos/farmacocinética , Liberación de Fármacos/efectos de la radiación , Glucosa/análogos & derivados , Glucosa/síntesis química , Glucosa/farmacocinética , Transportador de Glucosa de Tipo 1/metabolismo , Humanos , Isótopos/farmacocinética , Simulación del Acoplamiento MolecularRESUMEN
Organofluorosilicon based 18F-radiolabeling is an efficient method for incorporating fluorine-18 into 18F-radiopharmaceuticals for positron emission tomography (PET) by 19F/18F isotopic exchange (IE). The first PET radiopharmaceutical, 18F-SiFAlin-TATE, radiolabeled with a silicon-based [18F]fluoride acceptor (SiFA), namely, a para-substituted di-tert-butyl[18F]fluorosilylbenzene, has entered clinical trials, and is paving the way for other potential [18F]SiFA-labeled radiopharmaceuticals for diagnostic use. In this study, we report the in vitro metabolism of an oxime-linked SiFA tetrazine (SiFA-Tz), a new PET-radiotracer candidate, recently evaluated for pretargeted PET imaging and macromolecule labeling. Metabolism of SiFA-Tz was studied in mouse liver microsomes (MLM) for elucidating its major biotransformation pathways. Nontargeted screening by ultrahigh performance liquid chromatography high-resolution mass spectrometry (UHPLC-HRMS) was utilized for detection of unknown metabolites. The oxime bond between the SiFA and Tz groups forms two geometric (E/Z) isomers, which underwent the same biotransformations, but unexpectedly with different kinetics. In total, nine proposed metabolites of SiFA-Tz from phase I and II reactions were detected, five of which were defluorinated in MLMs, elucidating the metabolic pathway leading to previously reported defluorination of [18F]SiFA-Tz in vivo. Based on the HRMS studies a biotransformation pathway is proposed: hydroxylation (+O) to tert-butyl group adjacent to the silicon, followed by oxidative defluorination (+OH/-F) cleaving the fluorine off the silicon. Interestingly, eight proposed metabolites of a reduced dihydrotetrazine analogue, SiFA-H2Tz, from phase I and II reactions were additionally detected. To the best of our knowledge, this is the first reported comprehensive investigation of enzyme mediated metabolic pathway of tetrazines and para-substituted di-tert-butylfluorosilylbenzene fluoride acceptors, providing novel structural information on the biotransformation and fragmentation patterns of radiotracers bearing these structural motifs. By investigating the metabolism preceding defluorination, structurally optimized new SiFA compounds can be designed for expanding the portfolio of efficient 19F/18F isotopic exchange labeling probes for PET imaging.
Asunto(s)
Fluoruros/metabolismo , Radioisótopos de Flúor/metabolismo , Microsomas Hepáticos/metabolismo , Radiofármacos/metabolismo , Silicio/metabolismo , Animales , Biotransformación/fisiología , Cromatografía Líquida de Alta Presión/métodos , Femenino , Compuestos Heterocíclicos/metabolismo , Marcaje Isotópico/métodos , Cinética , Espectrometría de Masas/métodos , Ratones , Tomografía de Emisión de Positrones/métodosRESUMEN
Despite some promising results, the majority of patients do not benefit from T cell therapies, as tumors prevent T cells from entering the tumor, shut down their activity, or downregulate key antigens. Due to their nature and mechanism of action, oncolytic viruses have features that can help overcome many of the barriers currently facing T cell therapies of solid tumors. This study aims to understand how four different oncolytic viruses (adenovirus, vaccinia virus, herpes simplex virus, and reovirus) perform in that task. For that purpose, an immunocompetent in vivo tumor model featuring adoptive tumor-infiltrating lymphocyte (TIL) therapy was used. Tumor growth control (p < 0.001) and survival analyses suggest that adenovirus was most effective in enabling T cell therapy. The complete response rate was 62% for TILs + adenovirus versus 17.5% for TILs + PBS. Of note, TIL biodistribution did not explain efficacy differences between viruses. Instead, immunostimulatory shifts in the tumor microenvironment mirrored efficacy results. Overall, the use of oncolytic viruses can improve the utility of T cell therapies, and additional virus engineering by arming with transgenes can provide further antitumor effects. This phenomenon was seen when an unarmed oncolytic adenovirus was compared to Ad5/3-E2F-d24-hTNFa-IRES-hIL2 (TILT-123). A clinical trial is ongoing, where patients receiving TIL treatment also receive TILT-123 (ClinicalTrials.gov: NCT04217473).
RESUMEN
INTRODUCTION: Porous silicon (PSi) nanoparticles are capable of delivering therapeutic payloads providing targeted delivery and sustained release of the payloads. In this work we describe the development and proof-of-concept in vivo evaluation of thermally hydrocarbonized porous silicon (PSi) nanoparticles that are implanted with radioactive 155Tb atoms and coated with red blood cell (RBC) membrane (155Tb-THCPSi). The developed nanocomposites can be utilized as an intravenous delivery platform for theranostic radionuclides. METHODS: THCPSi thin films were implanted with 155Dy ions that decay to 155Tb at the ISOLDE radioactive ion-beam (RIB) facility at CERN. The films were processed to nanoparticles by ball-milling and sonication, and subsequently coated with either a solid lipid and RBC membrane or solely with RBC membrane. The nanocomposites were evaluated in vitro for stability and in vivo for circulation half-life and ex vivo for biodistribution in Balb/c mice. RESULTS: Nanoporous THCPSi films were successfully implanted with 155Tb and processed to coated nanoparticles. The in vitro stability of the particles in plasma and buffer solutions was not significantly different between the particle types, and therefore the RBC membrane coated particles with less laborious processing method were chosen for the biological evaluation. The RBC membrane coating enhanced significantly the blood half-life compared to bare THCPSi particles. In the ex vivo biodistribution study a pronounced accumulation to the spleen was found, with lower uptake in the liver and a minor uptake in the lung, gall bladder and bone marrow. CONCLUSIONS: We have demonstrated, using 155Tb RIB-implanted PSi nanoparticles coated with mouse RBC membranes, the feasibility of using such a theranostic nanosystem for the delivery of RIB based radionuclides with prolonged circulation time. ADVANCES IN KNOWLEDGE AND IMPLICATIONS FOR PATIENT CARE: For the first time, the RIB implantation technique has been utilized to produce PSi nanoparticle with a surface modified for better persistence in circulation. When optimized, these particles could be used in targeted radionuclide therapy with a combination of chemotherapeutic payload within the PSi structure.
Asunto(s)
Membrana Eritrocítica/química , Nanopartículas/química , Radioisótopos/química , Silicio/química , Terbio/química , Animales , Tampones (Química) , Estabilidad de Medicamentos , Semivida , Humanos , Ratones , PorosidadRESUMEN
Fluorine-18 is the most widely used positron emission tomography (PET) radionuclide currently in clinical application, due to its optimal nuclear properties. The synthesis of 18F-labeled radiotracers often requires harsh reaction conditions, limiting the use of sensitive bio- and macromolecules as precursors for direct radiolabeling with fluorine-18. We aimed to develop a milder and efficient in vitro and in vivo labeling method for trans-cyclooctene (TCO) functionalized proteins, through the bioorthogonal inverse-electron demand Diels-Alder (IEDDA) reaction with fluorine-18 radiolabeled tetrazine ([18F]SiFA-Tz). Here, we used TCO-modified bovine serum albumin (BSA) as the model protein, and isotopic exchange (IE) (19F/18F) chemistry as the labeling strategy. The radiolabeling of albumin-TCO with [18F]SiFA-Tz ([18F]6), providing [18F]fluoroalbumin ([18F]10) in high radiochemical yield (99.1 ± 0.2%, n = 3) and a molar activity (MA) of 1.1 GBq/µmol, confirmed the applicability of [18F]6 as a quick in vitro fluorination reagent for the TCO functionalized proteins. While the biological evaluation of [18F]6 demonstrated defluorination in vivo, limiting the utility for pretargeted applications, the in vivo stability of the radiotracer was dramatically improved when [18F]6 was used for the radiolabeling of albumin-TCO ([18F]10) in vitro, prior to administration. Due to the detected defluorination in vivo, structural optimization of the prosthetic group for improved stability is needed before further biological studies and application of pretargeted PET imaging.