Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
Plants (Basel) ; 11(13)2022 Jul 05.
Artículo en Inglés | MEDLINE | ID: mdl-35807727

RESUMEN

Salicylic acid (SA) is an important plant regulator reported as a mitigator of water deficit in plants, however without a recommendation for use in field conditions. Thus, this research aims to validate the use of SA under field conditions in regions with low water availability. For that, we evaluated CO2 assimilation (A), stomatal conductance (gs), transpiration (E), water use efficiency (WUE), and carboxylation efficiency (A/Ci) at 15, 30, and 45 days of continuous stress water deficit, as well as the application of salicylic acid (0.0; 0.5; 1.0; 1.5; 2.0 mM) in tomato plants subjected to continuous water deficit (45 days), in two years (2019 and 2020). The water deficit reduced the A, gs, E and A/Ci, while the foliar application of SA increased these parameters in all evaluated times, resulting in similar or even higher values than in plants without water deficit. Water deficit caused floral abortion in tomato plants, without the application of SA, reducing the number of fruit production. In contrast, plants that received about 1.3 mM of SA increased A and A/Ci and translocated the photo-assimilates, mainly to flowers and fruits, reducing floral abortion and increasing fruit production. Thus, foliar application of SA was efficient in mitigating the deleterious effects of water deficit in tomato plants regarding the gas exchange and fruit production.

2.
Insects ; 12(12)2021 Dec 10.
Artículo en Inglés | MEDLINE | ID: mdl-34940193

RESUMEN

Infestation by Bemisia tabaci (Gennadius) (Hemiptera: Aleyrodidae) causes damage to tomatoes with production losses of up to 100%, affecting the physiological and biochemical aspects of host plants. The objective of this study was to analyze the influence of infestation of cryptic species of B. tabaci MED and MEAM1 on the physiological and biochemical aspects of tomato. Tomato plants 'Santa Adélia Super' infested with B. tabaci (MED and MEAM1), and non-infested plants were evaluated for differences in gas exchange, chlorophyll - a fluorescence of photosystem II (PSII), and biochemical factors (total phenols, total flavonoids, superoxide dismutase-SOD, peroxidase-POD, and polyphenol oxidase-PPO). Plants infested with B. tabaci MED showed low rates of CO2 assimilation and stomatal conductance of 55% and 52%, respectively. The instantaneous carboxylation efficiency was reduced by 40% in MED and by 60% in MEAM1 compared to the control. Regarding biochemical aspects, plants infested by MED cryptic species showed high activity of POD and PPO enzymes and total phenol content during the second and third instars when compared to control plants. Our results indicate that B. tabaci MED infestation in tomato plants had a greater influence than B. tabaci MEAM1 infestation on physiological parameters (CO2 assimilation rate (A), stomatal conductance (gs), and apparent carboxylation efficiency (A/Ci)) and caused increased activity of POD and PPO enzymes, indicating plant resistance to attack. In contrast, B. tabaci MEAM1 caused a reduction in POD enzyme activity, favoring offspring performance.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...