Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
J Biol Chem ; 295(22): 7566-7583, 2020 05 29.
Artículo en Inglés | MEDLINE | ID: mdl-32327487

RESUMEN

We have previously demonstrated that ischemia/reperfusion (I/R) impairs endoplasmic reticulum (ER)-based protein folding in the heart and thereby activates an unfolded protein response sensor and effector, activated transcription factor 6α (ATF6). ATF6 then induces mesencephalic astrocyte-derived neurotrophic factor (MANF), an ER-resident protein with no known structural homologs and unclear ER function. To determine MANF's function in the heart in vivo, here we developed a cardiomyocyte-specific MANF-knockdown mouse model. MANF knockdown increased cardiac damage after I/R, which was reversed by AAV9-mediated ectopic MANF expression. Mechanistically, MANF knockdown in cultured neonatal rat ventricular myocytes (NRVMs) impaired protein folding in the ER and cardiomyocyte viability during simulated I/R. However, this was not due to MANF-mediated protection from reactive oxygen species generated during reperfusion. Because I/R impairs oxygen-dependent ER protein disulfide formation and such impairment can be caused by reductive stress in the ER, we examined the effects of the reductive ER stressor DTT. MANF knockdown in NRVMs increased cell death from DTT-mediated reductive ER stress, but not from nonreductive ER stresses caused by thapsigargin-mediated ER Ca2+ depletion or tunicamycin-mediated inhibition of ER protein glycosylation. In vitro, recombinant MANF exhibited chaperone activity that depended on its conserved cysteine residues. Moreover, in cells, MANF bound to a model ER protein exhibiting improper disulfide bond formation during reductive ER stress but did not bind to this protein during nonreductive ER stress. We conclude that MANF is an ER chaperone that enhances protein folding and myocyte viability during reductive ER stress.


Asunto(s)
Estrés del Retículo Endoplásmico , Retículo Endoplásmico/metabolismo , Chaperonas Moleculares/metabolismo , Daño por Reperfusión Miocárdica/metabolismo , Miocardio/metabolismo , Miocitos Cardíacos/metabolismo , Factores de Crecimiento Nervioso/metabolismo , Animales , Supervivencia Celular , Retículo Endoplásmico/genética , Retículo Endoplásmico/patología , Glicosilación , Células HeLa , Humanos , Ratones , Ratones Noqueados , Chaperonas Moleculares/genética , Daño por Reperfusión Miocárdica/genética , Daño por Reperfusión Miocárdica/patología , Miocardio/patología , Miocitos Cardíacos/patología , Factores de Crecimiento Nervioso/genética , Especies Reactivas de Oxígeno
2.
J Biol Chem ; 295(1): 237-249, 2020 01 03.
Artículo en Inglés | MEDLINE | ID: mdl-31792031

RESUMEN

Endoplasmic reticulum (ER) stress activates the unfolded protein response (UPR), which reduces levels of misfolded proteins. However, if ER homeostasis is not restored and the UPR remains chronically activated, cells undergo apoptosis. The UPR regulator, PKR-like endoplasmic reticulum kinase (PERK), plays an important role in promoting cell death when persistently activated; however, the underlying mechanisms are poorly understood. Here, we profiled the microRNA (miRNA) transcriptome in human cells exposed to ER stress and identified miRNAs that are selectively induced by PERK signaling. We found that expression of a PERK-induced miRNA, miR-483, promotes apoptosis in human cells. miR-483 induction was mediated by a transcription factor downstream of PERK, activating transcription factor 4 (ATF4), but not by the CHOP transcription factor. We identified the creatine kinase brain-type (CKB) gene, encoding an enzyme that maintains cellular ATP reserves through phosphocreatine production, as being repressed during the UPR and targeted by miR-483. We found that ER stress, selective PERK activation, and CKB knockdown all decrease cellular ATP levels, leading to increased vulnerability to ER stress-induced cell death. Our findings identify miR-483 as a downstream target of the PERK branch of the UPR. We propose that disruption of cellular ATP homeostasis through miR-483-mediated CKB silencing promotes ER stress-induced apoptosis.


Asunto(s)
Adenosina Trifosfato/metabolismo , MicroARNs/metabolismo , Respuesta de Proteína Desplegada , eIF-2 Quinasa/metabolismo , Factor de Transcripción Activador 4/genética , Factor de Transcripción Activador 4/metabolismo , Apoptosis , Forma BB de la Creatina-Quinasa/genética , Forma BB de la Creatina-Quinasa/metabolismo , Células HEK293 , Células HeLa , Homeostasis , Humanos , MicroARNs/genética , eIF-2 Quinasa/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...