Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
Phys Rev Lett ; 109(5): 056401, 2012 Aug 03.
Artículo en Inglés | MEDLINE | ID: mdl-23006190

RESUMEN

The correlated electronic structure of SrVO(3) has been investigated by angle-resolved photoemission spectroscopy using in situ prepared thin films. Pronounced features of band renormalization have been observed: a sharp kink ∼60 meV below the Fermi level (E(F)) and a broad so-called "high-energy kink" ∼0.3 eV below E(F) as in the high-T(c) cuprates, although SrVO(3) does not show magnetic fluctuations. We have deduced the self-energy in a wide energy range by applying the Kramers-Kronig relation to the observed spectra. The obtained self-energy clearly shows a large energy scale of ∼0.7 eV, which is attributed to electron-electron interaction and gives rise to the ∼0.3 eV kink in the band dispersion as well as the incoherent peak ∼1.5 eV below E(F). The present analysis enables us to obtain a consistent picture for both the incoherent spectra and the band renormalization.

2.
Phys Rev Lett ; 104(14): 147601, 2010 Apr 09.
Artículo en Inglés | MEDLINE | ID: mdl-20481962

RESUMEN

We have investigated the changes occurring in the electronic structure of digitally controlled SrVO(3) ultrathin films across the metal-insulator transition (MIT) by the film thickness using in situ photoemission spectroscopy. With decreasing film thickness, a pseudogap is formed at E(F) through spectral weight transfer from the coherent part to the incoherent part. The pseudogap finally evolves into an energy gap that is indicative of the MIT in a SrVO(3) ultrathin film. The observed spectral behavior is reproduced by layer dynamical-mean-field-theory calculations, and it indicates that the observed MIT is caused by the reduction in the bandwidth due to the dimensional crossover.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...