Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Más filtros













Base de datos
Intervalo de año de publicación
1.
J Cell Mol Med ; 27(17): 2457-2466, 2023 09.
Artículo en Inglés | MEDLINE | ID: mdl-37525467

RESUMEN

To date more than 1000 different variants in the PAH gene have been identified in patients with phenylketonuria (PKU). In Iran, several studies have been performed to investigate the genetics bases of the PKU in different parts of the country. In this study, we have analysed and present an update of the mutational landscape of the PAH gene as well as the population genetics and frequencies of detected variants for each cohort. Published articles on PKU mutations in Iran were identified through a comprehensive PubMed, Google Scholar, Web of Science (ISI), SCOPUS, Elsevier, Wiley Online Library and SID literature search using the terms: "phenylketonuria", "hyperphenylalaninemia", and "PKU" in combination with "Iran", "Iranian population", "mutation analysis", and "Molecular genetics". Among the literature-related to genetics of PKU, 18 studies were on the PKU mutations. According to these studies, in different populations of Iran 1497 patients were included for mutation detection that resulted in detection of 129 different mutations. Results of genetic analysis of the different cohorts of Iranian PKU patients show that the most prevalent mutation in Iran is the pathogenic splice variant c.1066-11G > A, occurring in 19.54% of alleles in the cohort. Four other common mutations were p.Arg261Gln, p.Pro281Leu, c.168 + 5G > C and p.Arg243Ter (8.18%, 6.45%, 5.88% and 3.7%, respectively). One notable feature of the studied populations is its high rate of consanguineous marriages. Considering this feature, determining the prevalent PKU mutations could be advantageous for designing screening and diagnostic panels in Iran.


Asunto(s)
Fenilalanina Hidroxilasa , Fenilcetonurias , Humanos , Fenilalanina Hidroxilasa/genética , Irán/epidemiología , Frecuencia de los Genes/genética , Fenilcetonurias/epidemiología , Fenilcetonurias/genética , Mutación/genética , Genotipo , Análisis Mutacional de ADN
2.
J Cell Mol Med ; 27(4): 496-505, 2023 02.
Artículo en Inglés | MEDLINE | ID: mdl-36691971

RESUMEN

We describe a 3.5-year-old Iranian female child and her affected 10-month-old brother with a maternally inherited derivative chromosome 9 [der(9)]. The postnatally detected rearrangement was finely characterized by aCGH analysis, which revealed a 15.056 Mb deletion of 9p22.3-p24.3p22.3 encompassing 14 OMIM morbid genes such as DOCK8, KANK1, DMRT1 and SMARCA2, and a gain of 3.309 Mb on 18p11.31-p11.32 encompassing USP14, THOC1, COLEC12, SMCHD1 and LPIN2. We aligned the genes affected by detected CNVs to clinical and functional phenotypic features using PhenogramViz. In this regard, the patient's phenotype and CNVs data were entered into PhenogramViz. For the 9p deletion CNV, 53 affected genes were identified and 17 of them were matched to 24 HPO terms describing the patient's phenotypes. Also, for CNV of 18p duplication, 22 affected genes were identified and six of them were matched to 13 phenotypes. Moreover, we used DECIPHER for in-depth characterization of involved genes in detected CNVs and also comparison of patient phenotypes with 9p and 18p genomic imbalances. Based on our filtration strategy, in the 9p22.3-p24.3 region, approximately 80 pathogenic/likely pathogenic/uncertain overlapping CNVs were in DECIPHER. The size of these CNVs ranged from 12.01 kb to 18.45 Mb and 52 CNVs were smaller than 1 Mb in size affecting 10 OMIM morbid genes. The 18p11.31-p11.32 region overlapped 19 CNVs in the DECIPHER database with the size ranging from 23.42 kb to 1.82 Mb. These CNVs affect eight haploinsufficient genes.


Asunto(s)
Deleción Cromosómica , Proteínas del Citoesqueleto , Masculino , Femenino , Humanos , Irán , Hibridación Genómica Comparativa , Fenotipo , Proteínas Adaptadoras Transductoras de Señales , Ubiquitina Tiolesterasa , Factores de Intercambio de Guanina Nucleótido , Proteínas Cromosómicas no Histona
3.
Diagnostics (Basel) ; 12(12)2022 Dec 17.
Artículo en Inglés | MEDLINE | ID: mdl-36553216

RESUMEN

Long non-coding ribonucleic acids (LncRNAs) are recently known for their role in regulating gene expression and the development of cancer. Controversial results indicate a correlation between the tissue expression of LncRNA and LncRNA content of extracellular vesicles. The present study aimed to evaluate the expression of different LncRNAs in non-small cell lung cancer (NSCLC) patients in tumor tissue, adjacent non-cancerous tissue (ANCT), and exosome-mediated lncRNA. Tumor and ANCT, as well as serum samples of 168 patient with NSCLC, were collected. The GHSROS, HNF1A-AS1, HOTAIR, HMlincRNA717, and LINCRNA-p21 relative expressions in tumor tissue, ANCT, and serum exosomes were evaluated in NSCLC patients. Among 168 NSCLC samples, the expressions of GHSROS (REx = 3.64, p = 0.028), HNF1A-AS1 (REx = 2.97, p = 0.041), and HOTAIR (REx = 2.9, p = 0.0389) were upregulated, and the expressions of HMlincRNA717 (REx = −4.56, p = 0.0012) and LINCRNA-p21 (REx = −5.14, p = 0.00334) were downregulated in tumor tissue in contrast to ANCT. Moreover, similar statistical differences were seen in the exosome-derived RNA of tumor tissues in contrast to ANCT samples. A panel of the five lncRNAs demonstrated that the area under the curve (AUC) for exosome and tumor was 0.937 (standard error: 0.012, p value < 0.0001). LncRNAs GHSROS, HNF1A-AS1, and HOTAIR showed high expression in tumor tissue and exosome content in NSCLC, and a panel that consisted of all five lncRNAs improved diagnosis of NSCLC.

4.
J Gastrointest Cancer ; 50(1): 78-83, 2019 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-29177609

RESUMEN

OBJECTIVE: The majority of gastric cancer (GC) diagnoses occur at the middle or late stage of the disease, indicating that finding novel biomarkers that could be detectable at earlier stage is urgently needed. Accumulating studies have shown that microRNAs, a class of tiny single-stranded RNAs, play important roles in multiple biological processes including cancer development. The present study aimed to evaluate the effect of miR-216a and miR-217 in GC. MATERIAL AND METHODS: The real-time quantitative reverse-transcription PCR was exploited to identify and compare the expression levels of miR-216a and miR-217 in 37 pairs of samples of gastric cancer tissue and adjacent normal tissue. Superimposed on this, the potential relationship between miR-216a/217 levels and clinicopathological parameters in patients suffering GC was explored. RESULTS: The results obtained from this study showed that the miR-216a is significantly upregulated in gastric cancer tissues, compared with adjacent normal tissues, but the altered expression of miR-217 was not significant. For miR-216a/217, no significant correlations were detected between expression levels of these miRNAs and clinical and pathological characteristics of patients. CONCLUSION: This prospective study proposes that upregulation of miR-216a might represent an important mechanism for the development of gastric cancer.


Asunto(s)
MicroARNs/genética , Neoplasias Gástricas/genética , Anciano , Femenino , Humanos , Masculino , Neoplasias Gástricas/patología
5.
Adv Clin Exp Med ; 27(3): 305-311, 2018 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-29558042

RESUMEN

BACKGROUND: To date, 4 classes of histone deacetylases (HDACs) have been identified in humans. Class I HDACs are zinc-dependent and NAD+-independent enzymes, and include 4 isoforms closely related to yeast RPD3: HDAC1, 2, 3, and 8. OBJECTIVES: The aims of the study were to quantitatively evaluate the expression of HDAC3 in colorectal cancer (CRC) and to correlate its expression levels with clinicopathological parameters. MATERIAL AND METHODS: We characterized expression patterns of HDAC3 as class I HDAC isoforms in a cohort of 48 CRC patients by quantitative (real-time) reverse transcription polymerase chain reaction (RT-PCR). In addition, the potential relationship between HDAC3 expression levels and clinicopathological parameters in patients suffering from CRC was explored. RESULTS: We found that HDAC3 was highly expressed in colorectal tumors compared to normal colorectal tissues (p < 0.05). Furthermore, we found significant correlations between HDAC3 expression levels and tumor differentiation grades (p < 0.05). CONCLUSIONS: In this prospective study we identified a pronounced HDAC3 expression pattern in CRC. Our findings support an important role of HDAC3 as a complementary molecular marker for existing histopathological diagnostic elements; it might also have applications in prognostic and targeted therapy. Furthermore, HDAC3 can be used as a biomarker to differentiate between tumor borders and margins, and it may also be useful for characterizing field cancerization in CRC.


Asunto(s)
Neoplasias del Colon/enzimología , Neoplasias Colorrectales/enzimología , Histona Desacetilasas/metabolismo , Proliferación Celular , Neoplasias del Colon/metabolismo , Neoplasias del Colon/patología , Neoplasias Colorrectales/metabolismo , Neoplasias Colorrectales/patología , Progresión de la Enfermedad , Regulación hacia Abajo , Histona Desacetilasas/genética , Humanos , Pronóstico , Estudios Prospectivos , Reacción en Cadena de la Polimerasa de Transcriptasa Inversa
6.
Cell J ; 16(1): 17-24, 2014 Feb 03.
Artículo en Inglés | MEDLINE | ID: mdl-24518971

RESUMEN

OBJECTIVE: Colorectal cancer (CRC) is one of the most common and aggressive cancers worldwide. The majority of CRC cases are sporadic that caused by somatic mutations. The Adenomatous Polyposis Coli (APC; OMIM 611731) is a tumor suppressor gene of Wnt pathway and is frequently mutated in CRC cases. This study was designed to investigate the spectrum of APC gene mutations in Iranian patients with sporadic colorectal cancer. MATERIALS AND METHODS: In this descriptive study, Tumor and normal tissue samples were obtained from thirty randomly selected and unrelated sporadic CRC patients. We examined the hotspot region of the APC gene in all patients. Our mutation detection method was direct DNA sequencing. RESULTS: We found a total of 8 different APC mutations, including two nonsense mutations (c.4099C>T and c.4348C>T), two missense mutations (c.3236C>G and c.3527C>T) and four frame shift mutations (c.2804dupA, c.4317delT, c.4464_4471delATTACATT and c.4468_4469dupCA). The c.3236C>G and c.4468_4469dupCA are novel mutations. The overall frequency of APC mutation was 26.7% (8 of 30 patients). CONCLUSION: This mutation rate is lower in comparison with previous studies from other countries. The findings of present study demonstrate a different APC mutation spectrum in CRC patients of Iranian origin compared with other populations.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA