Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 20
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
PLoS Pathog ; 20(3): e1012071, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38457461

RESUMEN

BACKGROUND: Eosinophilia is a hallmark of helminth infections and eosinophils are essential in the protective immune responses against helminths. Nevertheless, the distinct role of eosinophils during parasitic filarial infection, allergy and autoimmune disease-driven pathology is still not sufficiently understood. In this study, we established a mouse model for microfilariae-induced eosinophilic lung disease (ELD), a manifestation caused by eosinophil hyper-responsiveness within the lung. METHODS: Wild-type (WT) BALB/c mice were sensitized with dead microfilariae (MF) of the rodent filarial nematode Litomosoides sigmodontis three times at weekly intervals and subsequently challenged with viable MF to induce ELD. The resulting immune response was compared to non-sensitized WT mice as well as sensitized eosinophil-deficient dblGATA mice using flow cytometry, lung histology and ELISA. Additionally, the impact of IL-33 signaling on ELD development was investigated using the IL-33 antagonist HpARI2. RESULTS: ELD-induced WT mice displayed an increased type 2 immune response in the lung with increased frequencies of eosinophils, alternatively activated macrophages and group 2 innate lymphoid cells, as well as higher peripheral blood IgE, IL-5 and IL-33 levels in comparison to mice challenged only with viable MF or PBS. ELD mice had an increased MF retention in lung tissue, which was in line with an enhanced MF clearance from peripheral blood. Using eosinophil-deficient dblGATA mice, we demonstrate that eosinophils are essentially involved in driving the type 2 immune response and retention of MF in the lung of ELD mice. Furthermore, we demonstrate that IL-33 drives eosinophil activation in vitro and inhibition of IL-33 signaling during ELD induction reduces pulmonary type 2 immune responses, eosinophil activation and alleviates lung lacunarity. In conclusion, we demonstrate that IL-33 signaling is essentially involved in MF-induced ELD development. SUMMARY: Our study demonstrates that repeated sensitization of BALB/c mice with L. sigmodontis MF induces pulmonary eosinophilia in an IL-33-dependent manner. The newly established model recapitulates the characteristic features known to occur during eosinophilic lung diseases (ELD) such as human tropical pulmonary eosinophilia (TPE), which includes the retention of microfilariae in the lung tissue and induction of pulmonary eosinophilia and type 2 immune responses. Our study provides compelling evidence that IL-33 drives eosinophil activation during ELD and that blocking IL-33 signaling using HpARI2 reduces eosinophil activation, eosinophil accumulation in the lung tissue, suppresses type 2 immune responses and mitigates the development of structural damage to the lung. Consequently, IL-33 is a potential therapeutic target to reduce eosinophil-mediated pulmonary pathology.


Asunto(s)
Asma , Filariasis , Filarioidea , Eosinofilia Pulmonar , Humanos , Animales , Ratones , Microfilarias , Inmunidad Innata , Filariasis/parasitología , Interleucina-33 , Linfocitos/patología , Filarioidea/fisiología , Eosinófilos , Ratones Endogámicos BALB C
2.
J Innate Immun ; 16(1): 159-172, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38354709

RESUMEN

INTRODUCTION: Interleukin-4 (IL-4) is a central regulator of type 2 immunity, crucial for the defense against multicellular parasites like helminths. This study focuses on its roles and cellular sources during Litomosoides sigmodontis infection, a model for human filarial infections. METHODS: Utilizing an IL-4 secretion assay, investigation into the sources of IL-4 during the progression of L. sigmodontis infection was conducted. The impact of eosinophils on the Th2 response was investigated through experiments involving dblGATA mice, which lack eosinophils and, consequently, eosinophil-derived IL-4. RESULTS: The absence of eosinophils notably influenced Th2 polarization, leading to impaired production of type 2 cytokines. Interestingly, despite this eosinophil deficiency, macrophage polarization, proliferation, and antibody production remained unaffected. CONCLUSION: Our research uncovers eosinophils as a major source of IL-4, especially during the early phase of filarial infection. Consequently, these findings shed new light on IL-4 dynamics and eosinophil effector functions in filarial infections.


Asunto(s)
Eosinófilos , Filariasis , Filarioidea , Interleucina-4 , Células Th2 , Animales , Femenino , Ratones , Células Cultivadas , Modelos Animales de Enfermedad , Eosinófilos/inmunología , Filariasis/inmunología , Filarioidea/inmunología , Interleucina-4/metabolismo , Interleucina-4/inmunología , Macrófagos/inmunología , Ratones Endogámicos BALB C , Células Th2/inmunología
3.
Mucosal Immunol ; 16(6): 767-775, 2023 12.
Artículo en Inglés | MEDLINE | ID: mdl-37783278

RESUMEN

The early migratory phase of pulmonary helminth infections is characterized by tissue injury leading to the release of the alarmin interleukin (IL)-33 and subsequent induction of type 2 immune responses. We recently described a role for IL-17A, through suppression of interferon (IFN)-γ, as an important inducer of type 2 responses during infection with the lung-migrating rodent nematode Nippostrongylus brasiliensis. Here, we aimed to investigate the interaction between IL-17A and IL-33 during the early lung migratory stages of N. brasiliensis infection. In this brief report, we demonstrate that deficiency of IL-17A leads to impaired IL-33 expression and secretion early in infection, independent of IL-17A suppression of IFN-γ. Neutrophil-depletion experiments, which dramatically reduce lung injury, revealed that neutrophils are primarily responsible for the IL-17A-dependent release of IL-33 into the airways. Taken together, our results reveal an IL-17A-neutrophil-axis that can drive IL-33 during helminth infection, highlighting an additional pathway by which IL-17A regulates pulmonary type 2 immunity.


Asunto(s)
Nematodos , Neutrófilos , Animales , Ratones , Interleucina-17/metabolismo , Interleucina-33 , Pulmón , Células Epiteliales/metabolismo , Ratones Endogámicos C57BL
4.
Vaccines (Basel) ; 11(5)2023 May 10.
Artículo en Inglés | MEDLINE | ID: mdl-37243070

RESUMEN

More than two-hundred-million people are infected with filariae worldwide. However, there is no vaccine available that confers long-lasting protection against filarial infections. Previous studies indicated that vaccination with irradiated infective L3 larvae reduces the worm load. This present study investigated whether the additional activation of cytosolic nucleic acid receptors as an adjuvant improves the efficacy of vaccination with irradiated L3 larvae of the rodent filaria Litomosoides sigmodontis with the aim of identifying novel vaccination strategies for filarial infections. Subcutaneous injection of irradiated L3 larvae in combination with poly(I:C) or 3pRNA resulted in neutrophil recruitment to the skin, accompanied by higher IP-10/CXCL10 and IFN-ß RNA levels. To investigate the impact on parasite clearance, BALB/c mice received three subcutaneous injections in 2-week intervals with irradiated L3 larvae in combination with poly(I:C) or 3pRNA prior to the challenge infection. Vaccination with irradiated L3 larvae in combination with poly(I:C) or 3pRNA led to a markedly greater reduction in adult-worm counts by 73% and 57%, respectively, compared to the immunization with irradiated L3 larvae alone (45%). In conclusion, activation of nucleic acid-sensing immune receptors boosts the protective immune response against L. sigmodontis and nucleic acid-receptor agonists as vaccine adjuvants represent a promising novel strategy to improve the efficacy of vaccines against filariae and potentially other helminths.

5.
Immunity ; 56(5): 1064-1081.e10, 2023 05 09.
Artículo en Inglés | MEDLINE | ID: mdl-36948193

RESUMEN

The recent revolution in tissue-resident macrophage biology has resulted largely from murine studies performed in C57BL/6 mice. Here, using both C57BL/6 and BALB/c mice, we analyze immune cells in the pleural cavity. Unlike C57BL/6 mice, naive tissue-resident large-cavity macrophages (LCMs) of BALB/c mice failed to fully implement the tissue-residency program. Following infection with a pleural-dwelling nematode, these pre-existing differences were accentuated with LCM expansion occurring in C57BL/6, but not in BALB/c mice. While infection drove monocyte recruitment in both strains, only in C57BL/6 mice were monocytes able to efficiently integrate into the resident pool. Monocyte-to-macrophage conversion required both T cells and interleukin-4 receptor alpha (IL-4Rα) signaling. The transition to tissue residency altered macrophage function, and GATA6+ tissue-resident macrophages were required for host resistance to nematode infection. Therefore, during tissue nematode infection, T helper 2 (Th2) cells control the differentiation pathway of resident macrophages, which determines infection outcome.


Asunto(s)
Filariasis , Filarioidea , Infecciones por Nematodos , Ratones , Animales , Filarioidea/fisiología , Células Th2 , Monocitos , Cavidad Pleural , Ratones Endogámicos C57BL , Macrófagos/fisiología , Diferenciación Celular , Ratones Endogámicos BALB C
6.
Parasite Immunol ; 44(6): e12918, 2022 06.
Artículo en Inglés | MEDLINE | ID: mdl-35373850

RESUMEN

Infection with the filarial nematodes that cause diseases such as lymphatic filariasis and onchocerciasis represent major public health challenges. With millions of people at risk of infection, new strategies for treatment or prevention are urgently needed. More complete understanding of the host immune system's ability to control and eliminate the infection is an important step towards fighting these debilitating infectious diseases. Neutrophils are innate immune cells that are rapidly recruited to inflamed or infected tissues and while considered primarily anti-microbial, there is increasing recognition of their role in helminth infections. Filarial nematodes present a unique situation, as many species harbour the bacterial endosymbiont, Wolbachia. The unexpected involvement of neutrophils during filarial infections has been revealed both in human diseases and animal studies, with strong evidence for recruitment by Wolbachia. This present review will introduce the different human filarial diseases and discuss neutrophil involvement in both protective immune responses, but also in the exacerbation of pathology. Additionally, we will highlight the contributions of the murine model of filariasis, Litomosoides sigmodontis. While several studies have revealed the importance of neutrophils in these parasite infections, we will also draw attention to many questions that remain to be answered.


Asunto(s)
Filariasis Linfática , Filarioidea , Wolbachia , Animales , Humanos , Inmunidad , Ratones , Neutrófilos
7.
Semin Immunol ; 53: 101531, 2021 03.
Artículo en Inglés | MEDLINE | ID: mdl-34836773

RESUMEN

Neutrophils constitute the body's first line of defense against invading pathogens. Equipped with a large array of tools, these immune cells are highly efficient in eliminating bacterial and viral infections, yet their activity can at the same time be detrimental to the host itself - this is the broad consensus on these granulocytes. However, the last decade has proven that neutrophils are a much more sophisticated cell type with unexpected and underappreciated functions in health and disease. In this review, we look at the latest discoveries in neutrophil biology with a focus on their role during the hallmark setting of type 2 immunity - helminth infection. We discuss the involvement of neutrophils in various helminth infection models and summarize the latest findings regarding neutrophil regulation and effector function. We will show that neutrophils have much more to offer than previously thought and while studies of neutrophils in helminth infections are still in its infancy, recent discoveries highlight more than ever that these cells are a key cog of the immune system, even during type 2 responses.


Asunto(s)
Helmintos , Neutrófilos , Animales , Humanos , Inmunidad Innata
8.
Life Sci Alliance ; 4(8)2021 08.
Artículo en Inglés | MEDLINE | ID: mdl-34127548

RESUMEN

IL-13 is implicated in effective repair after acute lung injury and the pathogenesis of chronic diseases such as allergic asthma. Both these processes involve matrix remodelling, but understanding the specific contribution of IL-13 has been challenging because IL-13 shares receptors and signalling pathways with IL-4. Here, we used Nippostrongylus brasiliensis infection as a model of acute lung damage comparing responses between WT and IL-13-deficient mice, in which IL-4 signalling is intact. We found that IL-13 played a critical role in limiting tissue injury and haemorrhaging in the lung, and through proteomic and transcriptomic profiling, identified IL-13-dependent changes in matrix and associated regulators. We further showed a requirement for IL-13 in the induction of epithelial-derived type 2 effector molecules such as RELM-α and surfactant protein D. Pathway analyses predicted that IL-13 induced cellular stress responses and regulated lung epithelial cell differentiation by suppression of Foxa2 pathways. Thus, in the context of acute lung damage, IL-13 has tissue-protective functions and regulates epithelial cell responses during type 2 immunity.


Asunto(s)
Lesión Pulmonar Aguda/parasitología , Interleucina-13/deficiencia , Nippostrongylus/patogenicidad , Infecciones por Strongylida/genética , Lesión Pulmonar Aguda/genética , Lesión Pulmonar Aguda/metabolismo , Animales , Modelos Animales de Enfermedad , Femenino , Perfilación de la Expresión Génica , Péptidos y Proteínas de Señalización Intercelular/metabolismo , Masculino , Ratones , Proteómica , Infecciones por Strongylida/metabolismo , Regulación hacia Arriba
9.
Mucosal Immunol ; 13(6): 958-968, 2020 11.
Artículo en Inglés | MEDLINE | ID: mdl-32636457

RESUMEN

Nippostrongylus brasiliensis is a well-defined model of type-2 immunity but the early lung-migrating phase is dominated by innate IL-17A production. In this study, we confirm previous observations that Il17a-KO mice infected with N. brasiliensis exhibit an impaired type-2 immune response. Transcriptional profiling of the lung on day 2 of N. brasiliensis infection revealed an increased Ifng signature in Il17a-KO mice confirmed by enhanced IFNγ protein production in lung lymphocyte populations. Depletion of early IFNγ rescued type-2 immune responses in the Il17a-KO mice demonstrating that IL-17A-mediated suppression of IFNγ promotes type-2 immunity. Notably, later in infection, once the type-2 response was established, IL-17A limited the magnitude of the type-2 response. IL-17A regulation of type-2 immunity was lung-specific and infection with Trichuris muris revealed that IL-17A promotes a type-2 immune response in the lung even when infection is restricted to the intestine. Together our data reveal IL-17A as a major regulator of pulmonary type-2 immunity such that IL-17A supports early development of a protective type-2 response by suppression of IFNγ but subsequently limits excessive type-2 responses. A failure of this feedback loop may contribute to conditions such as severe asthma, characterised by combined elevation of IL-17 and type-2 cytokines.


Asunto(s)
Interleucina-17/metabolismo , Pulmón/inmunología , Nippostrongylus/fisiología , Infecciones por Strongylida/inmunología , Células Th2/inmunología , Animales , Células Cultivadas , Femenino , Tolerancia Inmunológica , Inmunidad Innata , Interferón gamma/metabolismo , Interleucina-17/genética , Masculino , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados
10.
GMS Infect Dis ; 7: Doc04, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-31815088

RESUMEN

TGFß is an anti-inflammatory molecule that suppresses pro-inflammatory immune responses. Previously, we demonstrated that chronic filarial infection has a beneficial impact on Escherichia coli-induced sepsis. In the present study, we investigated whether this protective effect is dependent on TGFß signaling and whether depletion of TGFß before E. coli challenge alters the early course of sepsis per se. In vivo depletion of TGFß before E. coli challenge did not alter levels of pro-inflammatory cytokines/chemokines and did neither increase the bacterial burden nor worsen E. coli-induced hypothermia six hours post E. coli challenge. Similarly, in the co-infection model, despite TGFß depletion, mice infected with the filarial nematode Litomosoides sigmodontis exhibited milder E. coli-induced hypothermia, reduced bacterial load and pro-inflammatory immune responses. Thus, we conclude that TGFß is not essentially modulating the initial pro-inflammatory phase during sepsis and that the protective effect of a chronic filarial infection against sepsis is independent of TGFß signaling.

11.
J Immunol ; 203(10): 2724-2734, 2019 11 15.
Artículo en Inglés | MEDLINE | ID: mdl-31586037

RESUMEN

Alternatively activated macrophages are essential effector cells during type 2 immunity and tissue repair following helminth infections. We previously showed that Ym1, an alternative activation marker, can drive innate IL-1R-dependent neutrophil recruitment during infection with the lung-migrating nematode, Nippostrongylus brasiliensis, suggesting a potential role for the inflammasome in the IL-1-mediated innate response to infection. Although inflammasome proteins such as NLRP3 have important proinflammatory functions in macrophages, their role during type 2 responses and repair are less defined. We therefore infected Nlrp3 -/- mice with N. brasiliensis Unexpectedly, compared with wild-type (WT) mice, infected Nlrp3 -/- mice had increased neutrophilia and eosinophilia, correlating with enhanced worm killing but at the expense of increased tissue damage and delayed lung repair. Transcriptional profiling showed that infected Nlrp3 -/- mice exhibited elevated type 2 gene expression compared with WT mice. Notably, inflammasome activation was not evident early postinfection with N. brasiliensis, and in contrast to Nlrp3 -/- mice, antihelminth responses were unaffected in caspase-1/11-deficient or WT mice treated with the NLRP3-specific inhibitor MCC950. Together these data suggest that NLRP3 has a role in constraining lung neutrophilia, helminth killing, and type 2 immune responses in an inflammasome-independent manner.


Asunto(s)
Inflamasomas/fisiología , Enfermedades Pulmonares Parasitarias/inmunología , Proteína con Dominio Pirina 3 de la Familia NLR/fisiología , Nippostrongylus/inmunología , Infecciones por Strongylida/inmunología , Animales , Caspasa 1/fisiología , Quimiotaxis de Leucocito , Eosinofilia/etiología , Eosinofilia/inmunología , Furanos/farmacología , Compuestos Heterocíclicos de 4 o más Anillos , Inmunidad Innata , Indenos , Interleucina-4/farmacología , Lectinas/biosíntesis , Lectinas/genética , Pulmón/patología , Pulmón/fisiología , Enfermedades Pulmonares Parasitarias/complicaciones , Enfermedades Pulmonares Parasitarias/patología , Enfermedades Pulmonares Parasitarias/fisiopatología , Macrófagos Alveolares/enzimología , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Proteína con Dominio Pirina 3 de la Familia NLR/antagonistas & inhibidores , Proteína con Dominio Pirina 3 de la Familia NLR/deficiencia , Proteína con Dominio Pirina 3 de la Familia NLR/genética , Neutrófilos/inmunología , Regeneración , Infecciones por Strongylida/complicaciones , Infecciones por Strongylida/patología , Infecciones por Strongylida/fisiopatología , Sulfonamidas/farmacología , Sulfonas , Transcripción Genética , beta-N-Acetilhexosaminidasas/biosíntesis , beta-N-Acetilhexosaminidasas/genética
12.
Parasit Vectors ; 12(1): 248, 2019 May 20.
Artículo en Inglés | MEDLINE | ID: mdl-31109364

RESUMEN

BACKGROUND: Mice are susceptible to infections with the rodent filarial nematode Litomosoides sigmodontis and develop immune responses that resemble those of human filarial infections. Thus, the L. sigmodontis model is used to study filarial immunomodulation, protective immune responses against filariae and to screen drug candidates for human filarial diseases. While previous studies showed that type 2 immune responses are protective against L. sigmodontis, the present study directly compared the impact of eosinophils, IL-5, and the IL-4R on the outcome of L. sigmodontis infection. METHODS: Susceptible wildtype (WT) BALB/c mice, BALB/c mice lacking eosinophils (dblGATA mice), IL-5-/- mice, IL-4R-/- mice and IL-4R-/-/IL-5-/- mice were infected with L. sigmodontis. Analyses were performed during the peak of microfilaremia in WT animals (71 dpi) as well as after IL-4R-/-/IL-5-/- mice showed a decline in microfilaremia (119 dpi) and included adult worm counts, peripheral blood microfilariae levels, cytokine production from thoracic cavity lavage, the site of adult worm residence, and quantification of major immune cell types within the thoracic cavity and spleen. RESULTS: Our study reveals that thoracic cavity eosinophil numbers correlated negatively with the adult worm burden, whereas correlations of alternatively activated macrophage (AAM) numbers with the adult worm burden (positive correlation) were likely attributed to the accompanied changes in eosinophil numbers. IL-4R-/-/IL-5-/- mice exhibited an enhanced embryogenesis achieving the highest microfilaremia with all animals becoming microfilariae positive and had an increased adult worm burden combined with a prolonged adult worm survival. CONCLUSIONS: These data indicate that mice deficient for IL-4R-/-/IL-5-/- have the highest susceptibility for L. sigmodontis infection, which resulted in an earlier onset of microfilaremia, development of microfilaremia in all animals with highest microfilariae loads, and an extended adult worm survival.


Asunto(s)
Susceptibilidad a Enfermedades/inmunología , Eosinófilos/inmunología , Filariasis/inmunología , Interleucina-5/genética , Receptores de Superficie Celular/genética , Animales , Modelos Animales de Enfermedad , Filariasis/sangre , Filarioidea/fisiología , Técnicas de Inactivación de Genes , Ratones , Ratones Endogámicos BALB C , Ratones Noqueados , Microfilarias/inmunología , Ácaros/parasitología , Transducción de Señal , Bazo/inmunología
13.
Int J Parasitol ; 48(12): 925-935, 2018 10.
Artículo en Inglés | MEDLINE | ID: mdl-30176234

RESUMEN

IL-6 has a wide range of biological activities that includes anti- and pro-inflammatory aspects. In this study, we investigated the role of IL-6 in immune responses to the rodent filarial nematode Litomosoides sigmodontis, a model for human filarial infections. IL-6-/- mice had a significantly increased worm burden after natural infection compared with wild type controls at early time points p.i. Given that the worm burden in IL-6-/- mice was already increased at the time point the infective larvae reached the pleural cavity, immune responses that may facilitate the migration from the site of infection (skin) via the lymphatics to the pleural cavity were analysed. Increased vascular permeability may facilitate larval migration, but blocking of histamine receptors had no effect on worm burden and vascular permeability was similar between IL-6-/- mice and wild type controls. In contrast, blocking mast cell degranulation reduced the worm burden in IL-6-/- mice partially, suggesting that release of mast cell-derived mediators improves larval migration to some degree. Protective immune responses within the skin were involved, as bypassing the skin barrier by inoculating infective L3s subcutaneously resulted in a comparable worm recovery in both mouse strains. Analysis of the cellular composition by flow cytometry and PCR array in the skin after exposure to filarial extract or L3s, respectively, indicate that the absence of IL-6 results in a delayed recruitment of neutrophils and macrophages to the site of initial infection. These results demonstrate that IL-6 is essentially involved in protective immune responses within the skin that impair migration of infective L3s.


Asunto(s)
Filariasis/inmunología , Filarioidea/inmunología , Interleucina-6/metabolismo , Animales , Movimiento Celular , Modelos Animales de Enfermedad , Filariasis/parasitología , Filarioidea/fisiología , Interleucina-6/deficiencia , Macrófagos/inmunología , Mastocitos/inmunología , Ratones , Neutrófilos/inmunología , Cavidad Pleural/parasitología , Piel/inmunología , Piel/parasitología
14.
Sci Rep ; 6: 39648, 2016 12 22.
Artículo en Inglés | MEDLINE | ID: mdl-28004792

RESUMEN

Nucleotide-binding oligomerization domain-containing protein 2 (NOD2) recognizes muramyl dipeptide (MDP) of bacterial cell walls, triggering NFκB-induced pro-inflammation. As most human pathogenic filariae contain Wolbachia endobacteria that synthesize the MDP-containing cell wall precursor lipid II, NOD2's role during infection with the rodent filaria Litomosoides sigmodontis was investigated. In NFκB reporter-cells, worm-extract containing Wolbachia induced NOD2 and NOD1. NOD2-deficient mice infected with L. sigmodontis had significantly more worms than wildtype controls early in infection. Increased worm burden was not observed after subcutaneous infection, suggesting that protective NOD2-dependent immune responses occur within the skin. Flow cytometry demonstrated that neutrophil recruitment to the skin was impaired in NOD2-/- mice after intradermal injection of third stage larvae (L3), and blood neutrophil numbers were reduced after L. sigmodontis infection. PCR array supported the requirement of NOD2 for recruitment of neutrophils to the skin, as genes associated with neutrophil recruitment and activation were downregulated in NOD2-/- mice after intradermal L3 injection. Neutrophil depletion before L. sigmodontis infection increased worm recovery in wildtype mice, confirming that neutrophils are essential against invading L3 larvae. This study indicates that NOD-like receptors are implemented in first-line protective immune responses against filarial nematodes.


Asunto(s)
Filariasis/inmunología , Infiltración Neutrófila , Proteína Adaptadora de Señalización NOD2/inmunología , Acetilmuramil-Alanil-Isoglutamina/farmacología , Animales , Pared Celular/inmunología , Citocinas/inmunología , Femenino , Filarioidea , Perfilación de la Expresión Génica , Células HEK293 , Humanos , Sistema Inmunológico , Larva , Ligandos , Ratones , Ratones Endogámicos BALB C , Ratones Endogámicos C57BL , Ratones Endogámicos NOD , Ratones Noqueados , Microbiota , Neutrófilos/inmunología , Transducción de Señal , Piel/microbiología , Piel/parasitología , Cavidad Torácica/parasitología
15.
J Innate Immun ; 8(6): 601-616, 2016.
Artículo en Inglés | MEDLINE | ID: mdl-27544668

RESUMEN

Helminths induce type 2 immune responses and establish an anti-inflammatory milieu in their hosts. This immunomodulation was previously shown to improve diet-induced insulin resistance which is linked to chronic inflammation. In the current study, we demonstrate that infection with the filarial nematode Litomosoides sigmodontis increased the eosinophil number and alternatively activated macrophage abundance within epididymal adipose tissue (EAT) and improved glucose tolerance in diet-induced obese mice in an eosinophil-dependent manner. L. sigmodontis antigen (LsAg) administration neither altered the body weight of animals nor adipose tissue mass or adipocyte size, but it triggered type 2 immune responses, eosinophils, alternatively activated macrophages, and type 2 innate lymphoid cells in EAT. Improvement in glucose tolerance by LsAg treatment remained even in the absence of Foxp3+ regulatory T cells. Furthermore, PCR array results revealed that LsAg treatment reduced inflammatory immune responses and increased the expression of genes related to insulin signaling (Glut4, Pde3b, Pik3r1, and Hk2) and fatty acid uptake (Fabp4 and Lpl). Our investigation demonstrates that L. sigmodontis infection and LsAg administration reduce diet-induced EAT inflammation and improve glucose tolerance. Helminth-derived products may, therefore, offer new options to improve insulin sensitivity, while loss of helminth infections in developing and developed countries may contribute to the recent increase in the prevalence of type 2 diabetes.


Asunto(s)
Diabetes Mellitus Tipo 2/inmunología , Eosinófilos/inmunología , Filariasis/inmunología , Filarioidea/inmunología , Macrófagos/inmunología , Obesidad/inmunología , Células Th2/inmunología , Animales , Antígenos Helmínticos/inmunología , Dieta , Modelos Animales de Enfermedad , Humanos , Resistencia a la Insulina/genética , Metabolismo de los Lípidos/genética , Masculino , Ratones , Ratones Endogámicos BALB C , Ratones Endogámicos C57BL , Ratones Noqueados , Transducción de Señal/genética
16.
Clin Immunol ; 164: 119-22, 2016 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-26898311

RESUMEN

Animal studies demonstrated that administration of helminth products can protect from autoimmune diseases. However, the success of such administrations is limited in the case of type 1 diabetes, as protection is only provided if the administration is started before the development of insulitis. In this study we investigated whether inclusion of helminth antigen administrations to an antigen-specific treatment with proinsulin improves the protective effect by triggering non-specific regulatory immune responses. Using a combination therapy of intraperitoneal Litomosoides sigmodontis antigen and intranasal pro-insulin, onset of diabetes was prevented in NOD mice after insulitis started, while either administration alone failed to protect. This protection was associated with an increased frequency of regulatory T cells within the pancreatic lymph nodes and a reduced inflammation of the pancreatic islets. This suggests that inclusion of helminth antigens improve the protective effect provided by antigen-specific therapies and represent a new potential therapeutic approach against autoimmune diseases.


Asunto(s)
Antígenos Helmínticos/uso terapéutico , Diabetes Mellitus Tipo 1/tratamiento farmacológico , Filarioidea/inmunología , Proinsulina/uso terapéutico , Administración Intranasal , Animales , Antígenos Helmínticos/farmacología , Diabetes Mellitus Tipo 1/inmunología , Femenino , Inyecciones Intraperitoneales , Insulina/inmunología , Islotes Pancreáticos/efectos de los fármacos , Islotes Pancreáticos/inmunología , Ganglios Linfáticos/efectos de los fármacos , Ganglios Linfáticos/inmunología , Ratones Endogámicos NOD , Proinsulina/farmacología , Linfocitos T Reguladores/efectos de los fármacos , Linfocitos T Reguladores/inmunología
17.
Diabetes Metab Res Rev ; 32(3): 238-50, 2016 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-26119261

RESUMEN

It is estimated that by the year 2035 almost 600 million people will suffer from diabetes. In the case of type 2 diabetes, the strongest increase of diabetes incidence occurs in developing and newly industrialized countries. This increase correlates not only with a progressing sedentary lifestyle and nutritional changes, but also environmental changes. Similarly, the increase of type 1 diabetes incidence in industrialized countries over the past decades cannot be explained by genetic factors alone, suggesting that environmental changes are also involved. One such environmental change is a reduced exposure to pathogens because of improved hygiene. Parasitic helminths modulate the immune system of their hosts and induce type 2 as well as regulatory immune responses. As pro-inflammatory immune responses are crucial for the onset of both type 1 and type 2 diabetes, helminth-induced immunomodulation may prevent diabetes onset and ameliorate insulin sensitivity. Several epidemiological studies in human and experimental animal models support such a protective effect of helminths for autoimmune diabetes. Recent studies further suggest that helminths may also provide such a beneficial effect for type 2 diabetes. In this review we summarize studies that investigated parasitic helminths and helminth-derived products and their impact on both type 1 and type 2 diabetes highlighting potential protective mechanisms.


Asunto(s)
Diabetes Mellitus Tipo 1/prevención & control , Diabetes Mellitus Tipo 2/prevención & control , Helmintos/inmunología , Animales , Diabetes Mellitus Tipo 1/inmunología , Diabetes Mellitus Tipo 2/inmunología , Humanos , Inmunomodulación
18.
Parasit Vectors ; 8: 396, 2015 Jul 25.
Artículo en Inglés | MEDLINE | ID: mdl-26209319

RESUMEN

BACKGROUND: One of the most advantageous research aspects of the murine model of filariasis, Litomosoides sigmodontis, is the availability of mouse strains with varying susceptibility to the nematode infection. In C57BL/6 mice, L. sigmodontis worms are largely eliminated in this strain by day 40 post-infection and never produce their offspring, microfilariae (Mf). This provides a unique opportunity to decipher potential immune pathways that are required by filariae to achieve a successful infection. In this study we tracked worm development and patency, the production of microfilariae and thus the transmission life-stage, in Rag2IL-2Rγ(-/-) mice which are deficient in T, B and NK cell populations. FINDINGS: Although worm burden was comparable between wildtype (WT) and Rag2IL-2Rγ(-/-) mice on d30, by day 72 post-infection, parasites in Rag2IL-2Rγ(-/-) mice were still in abundance, freely motile and all mice presented high quantities of Mf both at the site of infection, the thoracic cavity (TC), and in peripheral blood. Levels of cytokine (IL-4, IL-6, TNFα) and chemokine (MIP-2, RANTES, Eotaxin) parameters were generally low in the TC of infected Rag2IL-2Rγ(-/-)mice at both time-points. The frequency of neutrophils however was higher in Rag2IL-2Rγ(-/-)mice whereas eosinophils and macrophage populations, including alternatively activated macrophages, were elevated in WT controls. CONCLUSION: Our data highlight that adaptive immune responses prevent the development of patent L. sigmodontis infections in semi-susceptible C57BL/6 mice and suggest that induction of such responses may offer a strategy to prevent transmission of human filariasis.


Asunto(s)
Inmunidad Adaptativa , Citocinas/inmunología , Filariasis/parasitología , Animales , Citocinas/análisis , Modelos Animales de Enfermedad , Susceptibilidad a Enfermedades , Femenino , Filariasis/transmisión , Filarioidea/crecimiento & desarrollo , Filarioidea/fisiología , Humanos , Masculino , Ratones , Ratones Endogámicos C57BL , Microfilarias
19.
PLoS Pathog ; 11(1): e1004616, 2015 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-25611587

RESUMEN

Helminths immunomodulate their hosts and induce a regulatory, anti-inflammatory milieu that prevents allergies and autoimmune diseases. Helminth immunomodulation may benefit sepsis outcome by preventing exacerbated inflammation and severe pathology, but the influence on bacterial clearance remains unclear. To address this, mice were chronically infected with the filarial nematode Litomosoides sigmodontis (L.s.) and the outcome of acute systemic inflammation caused by i.p. Escherichia coli injection was determined. L.s. infection significantly improved E. coli-induced hypothermia, bacterial clearance and sepsis survival and correlated with reduced concentrations of associated pro-inflammatory cytokines/chemokines and a less pronounced pro-inflammatory macrophage gene expression profile. Improved sepsis outcome in L.s.-infected animals was mediated by macrophages, but independent of the alternatively activated macrophage subset. Endosymbiotic Wolbachia bacteria that are present in most human pathogenic filariae, as well as L.s., signal via TLR2 and modulate macrophage function. Here, gene expression profiles of peritoneal macrophages from L.s.-infected mice revealed a downregulation of genes involved in TLR signaling, and pulsing of macrophages in vitro with L.s. extract reduced LPS-triggered activation. Subsequent transfer improved sepsis outcome in naïve mice in a Wolbachia- and TLR2-dependent manner. In vivo, phagocytosis was increased in macrophages from L.s.-infected wild type, but not TLR2-deficient animals. In association, L.s. infection neither improved bacterial clearance in TLR2-deficient animals nor ameliorated E. coli-induced hypothermia and sepsis survival. These results indicate that chronic L.s. infection has a dual beneficial effect on bacterial sepsis, reducing pro-inflammatory immune responses and improving bacterial control. Thus, helminths and their antigens may not only improve the outcome of autoimmune and allergic diseases, but may also present new therapeutic approaches for acute inflammatory diseases that do not impair bacterial control.


Asunto(s)
Infecciones por Escherichia coli/inmunología , Escherichia coli/inmunología , Filariasis/inmunología , Filarioidea/inmunología , Macrófagos Peritoneales/inmunología , Macrófagos Peritoneales/metabolismo , Sepsis/prevención & control , Animales , Enfermedad Crónica , Coinfección , Infecciones por Escherichia coli/prevención & control , Femenino , Filarioidea/microbiología , Regulación de la Expresión Génica/inmunología , Ratones , Ratones Endogámicos BALB C , Ratones Noqueados , Sepsis/inmunología , Wolbachia/inmunología
20.
PLoS One ; 9(3): e93072, 2014.
Artículo en Inglés | MEDLINE | ID: mdl-24663956

RESUMEN

BACKGROUND: Interactions of the Th2 cytokine IL-33 with its receptor ST2 lead to amplified Type 2 immune responses. As Type 2 immune responses are known to mediate protection against helminth infections we hypothesized that the lack of ST2 would lead to an increased susceptibility to filarial infections. METHODOLOGY/PRINCIPAL FINDING: ST2 deficient and immunocompetent BALB/c mice were infected with the filarial nematode Litomosoides sigmodontis. At different time points after infection mice were analyzed for worm burden and their immune responses were examined within the thoracic cavity, the site of infection, and systemically using spleen cells and plasma. Absence of ST2 led to significantly increased levels of peripheral blood microfilariae, the filarial progeny, whereas L. sigmodontis adult worm burden was not affected. Development of local and systemic Type 2 immune responses were not impaired in ST2 deficient mice after the onset of microfilaremia, but L. sigmodontis infected ST2-ko mice had significantly reduced total numbers of cells within the thoracic cavity and spleen compared to infected immunocompetent controls. Pronounced microfilaremia in ST2-ko mice did not result from an increased microfilariae release by adult female worms, but an impaired splenic clearance of microfilariae. CONCLUSIONS/SIGNIFICANCE: Our findings suggest that the absence of ST2 does not impair the establishment of adult L. sigmodontis worms, but is important for the splenic clearance of microfilariae from peripheral blood. Thus, ST2 interactions may be important for therapies that intend to block the transmission of filarial disease.


Asunto(s)
Filariasis/inmunología , Filarioidea/inmunología , Receptores de Interleucina/inmunología , Bazo/inmunología , Bazo/parasitología , Animales , Enfermedad Crónica , Femenino , Filariasis/genética , Filariasis/patología , Proteína 1 Similar al Receptor de Interleucina-1 , Ratones , Ratones Mutantes , Receptores de Interleucina/genética , Sigmodontinae , Bazo/patología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...