Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
Biomimetics (Basel) ; 9(5)2024 Apr 25.
Artículo en Inglés | MEDLINE | ID: mdl-38786471

RESUMEN

In addition to water repellency, superhydrophobic leaves of plants such as Salvinia molesta adsorb oil and separate it from water surfaces. This phenomenon has been the inspiration for a new method of oil-water separation, the bionic oil adsorber (BOA). In this paper, we show how the biological effect can be abstracted and transferred to technical textiles, in this case knitted spacer textiles hydrophobized with a layered silicate, oriented at the biology push approach. Subsequently, the transport of the oil within the bio-inspired textile is analyzed by a three-dimensional fluid simulation. This fluid simulation shows that the textile can be optimized by reducing the pile yarn length, increasing the pile yarn spacing, and increasing the pile yarn diameter. For the first time, it has been possible with this simulation to optimize the bio-inspired textile with regard to oil transport with little effort and thus enable the successful implementation of a self-driven and sustainable oil removal method.

2.
Bioinspir Biomim ; 18(3)2023 04 19.
Artículo en Inglés | MEDLINE | ID: mdl-36881911

RESUMEN

Certain superhydrophobic plants, such asSalvinia molesta, are able to adsorb oil films from water surfaces and thus separate the oil from the water. There are first attempts to transfer this phenomenon to technical surfaces, but the functional principle and the influence of certain parameters are not yet fully understood. The aim of this work is to understand the interaction behavior between biological surfaces and oil, and to define design parameters for transferring the biological model to a technical textile. This will reduce the development time of a biologically inspired textile. For this purpose, the biological surface is transferred into a 2D model and the horizontal oil transport is simulated in Ansys Fluent. From these simulations, the influence of contact angle, oil viscosity and fiber spacing/diameter ratio was quantified. The simulation results were verified with transport tests on spacer fabrics and 3D prints. The values obtained serve as a starting point for the development of a bio-inspired textile for the removal of oil spills on water surfaces. Such a bio-inspired textile provides the basis for a novel method of oil-water separation that does not require the use of chemicals or energy. As a result, it offers great added value compared to existing methods.


Asunto(s)
Biónica , Textiles , Agua/química , Simulación por Computador
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...