Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros













Base de datos
Intervalo de año de publicación
1.
Nat Nanotechnol ; 19(2): 208-218, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-37798568

RESUMEN

A critical current challenge in the development of all-solid-state lithium batteries (ASSLBs) is reducing the cost of fabrication without compromising the performance. Here we report a sulfide ASSLB based on a high-energy, Co-free LiNiO2 cathode with a robust outside-in structure. This promising cathode is enabled by the high-pressure O2 synthesis and subsequent atomic layer deposition of a unique ultrathin LixAlyZnzOδ protective layer comprising a LixAlyZnzOδ surface coating region and an Al and Zn near-surface doping region. This high-quality artificial interphase enhances the structural stability and interfacial dynamics of the cathode as it mitigates the contact loss and continuous side reactions at the cathode/solid electrolyte interface. As a result, our ASSLBs exhibit a high areal capacity (4.65 mAh cm-2), a high specific cathode capacity (203 mAh g-1), superior cycling stability (92% capacity retention after 200 cycles) and a good rate capability (93 mAh g-1 at 2C). This work also offers mechanistic insights into how to break through the limitation of using expensive cathodes (for example, Co-based) and coatings (for example, Nb-, Ta-, La- or Zr-based) while still achieving a high-energy ASSLB performance.

2.
Adv Mater ; 35(51): e2304440, 2023 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-37578018

RESUMEN

Sodium-ion batteries have recently emerged as a promising alternative to lithium-based batteries, driven by an ever-growing demand for electricity storage systems. The present workproposes a cobalt-free high-capacity cathode for sodium-ion batteries, synthesized using a high-entropy approach. The high-entropy approach entails mixing more than five elements in a single phase; hence, obtaining the desired properties is a challenge since this involves the interplay between different elements. Here, instead of oxide, oxyfluoride is chosen to suppress oxygen loss during long-term cycling. Supplement to this, lithium is introduced in the composition to obtain high configurational entropy and sodium vacant sites, thus stabilizing the crystal structure, accelerating the kinetics of intercalation/deintercalation, and improving the air stability of the material. With the optimization of the cathode composition, a reversible capacity of 109 mAh g-1 (2-4 V) and 144 mAh g-1 (2-4.3 V) is observed in the first few cycles, along with a significant improvement in stability during prolonged cycling. Furthermore, in situ and ex situ diffraction studies during charging/discharging reveal that the high-entropy strategy successfully suppresses the complex phase transition. The impressive outcomes of the present work strongly motivate the pursuit of the high-entropy approach to develop efficient cathodes for sodium-ion batteries.

3.
ACS Appl Mater Interfaces ; 13(51): 61733-61741, 2021 Dec 29.
Artículo en Inglés | MEDLINE | ID: mdl-34904822

RESUMEN

Owing to its high energy density, LiNi0.8Co0.1Mn0.1O2 (NMC811) is a cathode material of prime interest for electric vehicle battery manufacturers. However, NMC811 suffers from several irreversible parasitic reactions that lead to severe capacity fading and impedance buildup during prolonged cycling. Thin surface protection films coated on the cathode material mitigate degradative chemomechanical reactions at the electrode-electrolyte interphase, which helps to increase cycling stability. However, these coatings may impede the diffusion of lithium ions, and therefore, limit the performance of the cathode material at a high C-rate. Herein, we report on the synthesis of zirconium phosphate (ZrxPOy) and lithium-containing zirconium phosphate (LixZryPOz) coatings as artificial cathode-electrolyte interphases (ACEIs) on NMC811 using the atomic layer deposition technique. Upon prolonged cycling, the ZrxPOy- and LixZryPOz-coated NMC811 samples show 36.4 and 49.4% enhanced capacity retention, respectively, compared with the uncoated NMC811. Moreover, the addition of Li ions to the LixZryPOz coating enhances the rate performance and initial discharge capacity in comparison to the ZrxPOy-coated and uncoated samples. Using online electrochemical mass spectroscopy, we show that the coated ACEIs largely suppress the degradative parasitic side reactions observed with the uncoated NMC811 sample. Our study demonstrates that providing extra lithium to the ACEI layer improves the cycling stability of the NMC811 cathode material without sacrificing its rate capability performance.

4.
Sci Rep ; 8(1): 12082, 2018 Aug 14.
Artículo en Inglés | MEDLINE | ID: mdl-30108229

RESUMEN

Electrode fabrication and membrane electrode assembly (MEA) processes are critical steps in polymer electrolyte membrane fuel cell (PEMFC) technology. The properties of decal substrate material are important in decal coating technique for efficient transfer of catalyst layer. In the present study, MEAs are fabricated in decal method using 6 different decal substrates among which polypropylene (PP) is found ideal. Morphological, thermal, spectroscopic and sessile drop measurements are conducted for 6 decal substrates to evaluate the thermal and physicochemical properties. Studies indicate PP is thermally stable at hot-press conditions, having optimal hydrophobicity that hinders the coagulation of catalyst ink slurry cast. The pristine PP film has been identified to showcase 100% transfer yield onto the Nafion membrane without contamination and delamination of catalyst layer from membrane. The PP based MEAs are evaluated underconstant current mode in a hydrogen-oxygen fuel cell test fixture. The performance is found to be of 0.6 V at a constant current density of 1.2 A.cm-2. Besides, the cost of PP-film is only 7.5% of Kapton-film, and hence the current research work enables the high throughput electrode fabrication process for PEMFC commercialization.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA