Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
Reprod Sci ; 30(6): 1891-1910, 2023 06.
Artículo en Inglés | MEDLINE | ID: mdl-36484981

RESUMEN

Lead (Pb) is a highly toxic heavy metal. Pb exposure could adversely affect many organs, including the male reproductive system. Oxidative stress and mitochondrial impairment play a fundamental role in the pathogenesis of Pb-induced male reproductive system injury. Taurine (TAU) is abundantly found in mammalian bodies. The positive effects of TAU on oxidative stress biomarkers and mitochondrial function have been reported. The current study evaluated the effects of TAU on Pb-induced reproductive toxicity. Mice received Pb (20 mg/kg/day; gavage, 35 consecutive days). Then, sperm indices (quality and quantity) together with sperm kinetics, sperm mitochondrial parameters, testicular and sperm oxidative stress biomarkers, testis and plasma testosterone levels, and the expression of genes involved in the steroidogenesis process have been evaluated. Pb caused significant histopathological alterations and oxidative stress in male mice's reproductive system and sperm. Moreover, significant mitochondrial function impairment was evident in sperm isolated from Pb-treated mice. Pb exposure also suppressed the expression of StAR, 17ß-HSD, CYP11A, and 3ß-HSD genes in the male gonad. It was found that TAU (500 and 1000 mg/kg) significantly improved oxidative stress biomarkers in both male gonads and gametes of Pb-treated mice. TAU also significantly restored sperm mitochondrial function and kinetics. The expression of genes involved in steroidogenesis was also higher in TAU-treated animals. These data suggest TAU as an effective agent against Pb-induced reproductive toxicity. The effects of TAU on oxidative stress markers, mitochondrial function, and the steroidogenesis process seem to play a fundamental role in its protective properties. Further studies are warranted to detect the precise protective effects of this amino acid in the reproductive system. Lead (Pb) is a toxic element that adversely affects the male reproductive system. Mitochondrial impairment and oxidative stress have a crucial role in the Pb-induced reproductive toxicity. Taurine (TAU) could considerably improve the reproductive toxicity induced by Pb via enhancing mitochondrial function and mitigating oxidative stress indices. ΔΨ, mitochondrial membrane potential; ATP, adenosine triphosphate.


Asunto(s)
Plomo , Taurina , Masculino , Ratones , Animales , Taurina/farmacología , Taurina/metabolismo , Fenómenos Biomecánicos , Plomo/toxicidad , Plomo/metabolismo , Semen/metabolismo , Espermatozoides/metabolismo , Testículo/metabolismo , Estrés Oxidativo , Mitocondrias/metabolismo , Biomarcadores/metabolismo , Testosterona , Mamíferos/metabolismo
2.
Environ Toxicol ; 37(12): 2990-3006, 2022 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-36088639

RESUMEN

Lead (Pb) is a highly toxic heavy metal widely dispersed in the environment because of human industrial activities. Many studies revealed that Pb could adversely affect several organs, including the male reproductive system. Pb-induced reproductive toxicity could lead to infertility. Thus, finding safe and clinically applicable protective agents against this complication is important. It has been found that oxidative stress plays a fundamental role in the pathogenesis of Pb-induced reprotoxicity. Glycine is the simplest amino acid with a wide range of pharmacological activities. It has been found that glycine could attenuate oxidative stress and mitochondrial impairment in various experimental models. The current study was designed to evaluate the role of glycine in Pb-induced reproductive toxicity in male mice. Male BALB/c mice received Pb (20 mg/kg/day; gavage; 35 consecutive days) and treated with glycine (250 and 500 mg/kg/day; gavage; 35 consecutive days). Then, reproductive system weight indices, biomarkers of oxidative stress in the testis and isolated sperm, sperm kinetic, sperm mitochondrial indices, and testis histopathological alterations were monitored. A significant change in testis, epididymis, and Vas deferens weight was evident in Pb-treated animals. Markers of oxidative stress were also significantly increased in the testis and isolated sperm of the Pb-treated group. A significant disruption in sperm kinetic was also evident when mice received Pb. Moreover, Pb exposure caused significant deterioration in sperm mitochondrial indices. Tubular injury, tubular desquamation, and decreased spermatogenic index were histopathological alterations detected in Pb-treated mice. It was found that glycine significantly blunted oxidative stress markers in testis and sperm, improved sperm mitochondrial parameters, causing considerable higher velocity-related indices (VSL, VCL, and VAP) and percentages of progressively motile sperm, and decreased testis histopathological changes in Pb-exposed animals. These data suggest glycine as a potential protective agent against Pb-induced reproductive toxicity. The effects of glycine on oxidative stress markers and mitochondrial function play a key role in its protective mechanism.


Asunto(s)
Glicina , Plomo , Humanos , Masculino , Ratones , Animales , Plomo/toxicidad , Plomo/metabolismo , Glicina/farmacología , Regulación hacia Abajo , Fenómenos Biomecánicos , Semillas/metabolismo , Espermatozoides , Estrés Oxidativo , Testículo , Mitocondrias/metabolismo , Sustancias Protectoras/farmacología , Biomarcadores/metabolismo , Antioxidantes/farmacología , Antioxidantes/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...