Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
Sci Total Environ ; 950: 175189, 2024 Nov 10.
Artículo en Inglés | MEDLINE | ID: mdl-39097021

RESUMEN

This research analyses 24 years of oil extraction in blocks 16 and 67 of the Yasuní National Park (YNP) in the Amazonian Forest of Ecuador, one of the most biodiverse spaces in the world and with the current presence of ancient indigenous communities. As a novel contribution, we have carried out a Life-Cycle Assessment (LCA) that quantifies the footprints associated with the extraction, transportation, refining, distribution and final uses of the oil in four different scenarios (oil for asphalt use, electricity, marine fuel and passenger car transport). This study also sheds light on the energy return at the point of use of different oil-derivatives, and complements this with a qualitative analysis of the social, cultural and environmental implications for the Waorani communities. We conclude that the environmental burdens of the extraction process in blocks 16 and 67 in 2015 were greater than those of countries such as the United States, Saudi Arabia and Indonesia, based on the analysis of 11 impact categories. The blocks' operation is the most unfavourable for the categories of Terrestrial Acidification Potential (TAP), Global Warming Potential (GWP), Terrestrial Ecotoxicity Potential (TEP) and Ecosystem Quality Loss Potential (EQL), with increments of 804.15 %, 105.36 %, 506.29 % and 210.73 %, respectively, in relation to the average of the rest of the extraction systems analysed. Specifically, the present case study shows 75.18 % higher impacts in the blocks addressed, when compared to the Ecuadorian average. During the period 1999-2022, the carbon emissions associated with the oil extraction in these blocks have increased by 139.01%. It has been detected a neo-colonial economic behaviour: while the Ecuadorian state received 21% of the sales, the Spanish government and the oil companies received, on average, 38% and 41% of the per-litre average fuel price, respectively. Thus, 79% of the income stayed in the Global North. We conclude that, on average, 19.64 % of the impacts associated with crude oil production and consumption occur in the Amazonian region of the YNP, depending on the fuel used and the consumption mechanism. For the Global Warming Potential (GWP) impact category, the extraction process carries, on average, 34.51 % of the weight in all of the life-cycle impacts, depending on the consumption scenario. It was also estimated that to be able to use 0.33 kWh of electricity from fuel combustion, 0.47 kWh of energy for goods transport and 0.20 kWh for passenger transport, an investment of 1 kWh is required, with an average extended EROI of 1:3.33. According to the qualitative analysis performed, it has been concluded that the main local impacts are related to the obstacles in environmental monitoring and information, the economic dependence of the communities on the oil extraction company, and cultural transformations; impacts that are not easily quantifiable or detectable using other methodologies. The combination of the qualitative analysis and LCA showed that the neo-colonial economic distribution did not compensate the social and environmental impacts of the oil extraction occurred in the YNP.

2.
Data Brief ; 41: 107847, 2022 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-35528451

RESUMEN

The organisational life cycle assessment (O-LCA) and the social organisational life cycle assessment (SO-LCA) of the University of the Basque Country UPV/EHU were conducted. The data presented in this paper support the calculation of the environmental and social footprint of the University of the Basque Country UPV/EHU for year 2016 [1], and may be used as a reference for future calculations of the environmental and social footprint of higher education institutions and other organisations. This dataset provides detailed information on the UPV/EHU and the boundaries considered; on the compilation and quantification of the life cycle inventory (LCI) -which included a transport survey conducted in summer 2018-; and on the modelling process followed for the calculation of the environmental and social footprints, based on the ecoinvent 3.3 database [2] and PSILCA-based Soca v1 add-on [3, 4], and carried out with the openLCA free software [5]. The dataset also includes the life cycle impact assessment (LCIA) results provided by the CML (baseline, 2015) [6] and ReCiPe (endpoint (H), 2008) [7] LCIA methods and post-processed social impacts provided by the Social Impacts Weighting Method [3], disaggregated by subprocesses and impact locations. Data is provided for the reference year (2016), and some aggregated data is also provided for alternative scenarios that were explored in order to check pathways to reduce social and environmental impacts of the academic activity of the UPV/EHU [1].

3.
Environ Sci Technol Lett ; 8(1): 46-52, 2021 Jan 12.
Artículo en Inglés | MEDLINE | ID: mdl-37566352

RESUMEN

The COVID-19 pandemic is the single largest event in contemporary history in terms of the global restriction of mobility, with the majority of the world population experiencing various forms of "lockdown". This phenomenon incurred increased amounts of teleworking and time spent at home, fewer trips to shops, closure of retail outlets selling non-essential goods, and the near disappearance of leisure and recreational activities. This paper presents a novel method for an economy-wide estimate of the emissions reductions caused by the restriction of movement. Using a global multiregional macro-economic model complemented by Google Community Mobility Reports (CMRs) and national transport data, we cover 129 individual countries and quantify direct and indirect global emissions reductions of greenhouse gases (GHG; 1173 Mt), PM2.5 (0.23 Mt), SO2 (1.57 Mt), and NOx (3.69 Mt). A statistically significant correlation is observed between cross-country emission reductions and the stringency of mobility restriction policies. Due to the aggregated nature of the CMRs, we develop different scenarios linked to consumption, work, and lifestyle aspects. Global reductions are on the order of 1-3% (GHG), 1-2% (PM2.5), 0.5-2.8% (SO2), and 3-4% (NOx). Our results can help support crucial decision making in the post-COVID world, with quantified information about how direct and indirect consequences of mobility changes benefit the environment.

4.
J Clean Prod ; 282: 124528, 2021 Feb 01.
Artículo en Inglés | MEDLINE | ID: mdl-33041531

RESUMEN

Lithium-sulfur (Li-S) batteries present a great potential to displace current energy storage chemistries thanks to their energy density that goes far beyond conventional batteries. To promote the development of greener Li-S batteries, closing the existing gap between the quantification of the potential environmental impacts associated with Li-S cathodes and their performance is required. Herein we show a comparative analysis of the life cycle environmental impacts of five Li-S battery cathodes with high sulfur loadings (1.5-15 mg·cm-2) through life cycle assessment (LCA) methodology and cradle-to-gate boundary. Depending on the selected battery, the environmental impact can be reduced by a factor up to 5. LCA results from Li-S batteries are compared with the conventional lithium ion battery from Ecoinvent 3.6 database, showing a decreased environmental impact per kWh of storage capacity. A predominant role of the electrolyte on the environmental burdens associated with the use of Li-S batteries was also found. Sensitivity analysis shows that the specific impacts can be reduced by up to 70% by limiting the amount of used electrolyte. Overall, this manuscript emphasizes the potential of Li-S technology to develop environmentally benign batteries aimed at replacing existing energy storage systems.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...