Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Más filtros













Base de datos
Intervalo de año de publicación
1.
Mol Ther ; 30(1): 145-163, 2022 01 05.
Artículo en Inglés | MEDLINE | ID: mdl-34418541

RESUMEN

Sickle cell disease (SCD) is caused by a mutation in the ß-globin gene leading to polymerization of the sickle hemoglobin (HbS) and deformation of red blood cells. Autologous transplantation of hematopoietic stem/progenitor cells (HSPCs) genetically modified using lentiviral vectors (LVs) to express an anti-sickling ß-globin leads to some clinical benefit in SCD patients, but it requires high-level transgene expression (i.e., high vector copy number [VCN]) to counteract HbS polymerization. Here, we developed therapeutic approaches combining LV-based gene addition and CRISPR-Cas9 strategies aimed to either knock down the sickle ß-globin and increase the incorporation of an anti-sickling globin (AS3) in hemoglobin tetramers, or to induce the expression of anti-sickling fetal γ-globins. HSPCs from SCD patients were transduced with LVs expressing AS3 and a guide RNA either targeting the endogenous ß-globin gene or regions involved in fetal hemoglobin silencing. Transfection of transduced cells with Cas9 protein resulted in high editing efficiency, elevated levels of anti-sickling hemoglobins, and rescue of the SCD phenotype at a significantly lower VCN compared to the conventional LV-based approach. This versatile platform can improve the efficacy of current gene addition approaches by combining different therapeutic strategies, thus reducing the vector amount required to achieve a therapeutic VCN and the associated genotoxicity risk.


Asunto(s)
Anemia de Células Falciformes , Edición Génica , Anemia de Células Falciformes/genética , Anemia de Células Falciformes/terapia , Proteína 9 Asociada a CRISPR/genética , Hemoglobina Fetal/genética , Edición Génica/métodos , Humanos , Globinas beta/genética
2.
Sci Rep ; 11(1): 4409, 2021 02 24.
Artículo en Inglés | MEDLINE | ID: mdl-33627679

RESUMEN

We present here a label-free development based on preexisting Quantitative Phase Imaging (QPI) that allows non-invasive live monitoring of both individual cells and cell populations. Growth, death, effect of toxic compounds are quantified under visible light with a standard inverted microscope. We show that considering the global biomass of a cell population is a more robust and accurate method to assess its growth parameters in comparison to compiling individually segmented cells. This is especially true for confluent conditions. This method expands the use of light microscopy in answering biological questions concerning live cell populations even at high density. In contrast to labeling or lysis of cells this method does not alter the cells and could be useful in high-throughput screening and toxicity studies.


Asunto(s)
Microscopía/métodos , Biomasa , Línea Celular , Células HEK293 , Ensayos Analíticos de Alto Rendimiento/métodos , Humanos
3.
Appl Opt ; 54(28): 8375-82, 2015 Oct 01.
Artículo en Inglés | MEDLINE | ID: mdl-26479612

RESUMEN

We investigate phase imaging as a measurement method for laser damage detection and analysis of laser-induced modification of optical materials. Experiments have been conducted with a wavefront sensor based on lateral shearing interferometry associated with a high-magnification optical microscope. The system has been used for the in-line observation of optical thin films and bulk samples, laser irradiated in two different conditions: 500 fs pulses at 343 and 1030 nm, and millisecond to second irradiation with a CO2 laser at 10.6 µm. We investigate the measurement of the laser-induced damage threshold of optical material by detection and phase changes and show that the technique realizes high sensitivity with different optical path measurements lower than 1 nm. Additionally, the quantitative information on the refractive index or surface modification of the samples under test that is provided by the system has been compared to classical metrology instruments used for laser damage or laser ablation characterization (an atomic force microscope, a differential interference contrast microscope, and an optical surface profiler). An accurate in-line measurement of the morphology of laser-ablated sites, from few nanometers to hundred microns in depth, is shown.

4.
Opt Express ; 23(12): 16383-406, 2015 Jun 15.
Artículo en Inglés | MEDLINE | ID: mdl-26193611

RESUMEN

We describe a new technique based on the use of a high-resolution quadri-wave lateral shearing interferometer to perform quantitative linear retardance and birefringence measurements on biological samples. The system combines quantitative phase images with varying polarization excitation to create retardance images. This technique is compatible with living samples and gives information about the local retardance and structure of their anisotropic components. We applied our approach to collagen fibers leading to a birefringence value of (3.4 ± 0.3) · 10(-3) and to living cells, showing that cytoskeleton can be imaged label-free.

5.
J Biomed Opt ; 20(12): 126009, 2015.
Artículo en Inglés | MEDLINE | ID: mdl-26720876

RESUMEN

Single-cell dry mass measurement is used in biology to follow cell cycle, to address effects of drugs, or to investigate cell metabolism. Quantitative phase imaging technique with quadriwave lateral shearing interferometry (QWLSI) allows measuring cell dry mass. The technique is very simple to set up, as it is integrated in a camera-like instrument. It simply plugs onto a standard microscope and uses a white light illumination source. Its working principle is first explained, from image acquisition to automated segmentation algorithm and dry mass quantification. Metrology of the whole process, including its sensitivity, repeatability, reliability, sources of error, over different kinds of samples and under different experimental conditions, is developed. We show that there is no influence of magnification or spatial light coherence on dry mass measurement; effect of defocus is more critical but can be calibrated. As a consequence, QWLSI is a well-suited technique for fast, simple, and reliable cell dry mass study, especially for live cells.


Asunto(s)
Interferometría/métodos , Análisis de la Célula Individual/métodos , Algoritmos , Animales , Artefactos , Automatización , Células COS , Calibración , Chlorocebus aethiops , Diseño de Equipo , Eritrocitos/citología , Procesamiento de Imagen Asistido por Computador , Luz , Microscopía/métodos , Mitosis , Distribución Normal , Óptica y Fotónica , Reproducibilidad de los Resultados
6.
Opt Express ; 22(7): 8654-71, 2014 Apr 07.
Artículo en Inglés | MEDLINE | ID: mdl-24718236

RESUMEN

We describe the use of spatially incoherent illumination to make quantitative phase imaging of a semi-transparent sample, even out of the paraxial approximation. The image volume electromagnetic field is collected by scanning the image planes with a quadriwave lateral shearing interferometer, while the sample is spatially incoherently illuminated. In comparison to coherent quantitative phase measurements, incoherent illumination enriches the 3D collected spatial frequencies leading to 3D resolution increase (up to a factor 2). The image contrast loss introduced by the incoherent illumination is simulated and used to compensate the measurements. This restores the quantitative value of phase and intensity. Experimental contrast loss compensation and 3D resolution increase is presented using polystyrene and TiO(2) micro-beads. Our approach will be useful to make diffraction tomography reconstruction with a simplified setup.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA