Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 19 de 19
Filtrar
Más filtros













Base de datos
Intervalo de año de publicación
1.
J Food Sci Technol ; 60(11): 2736-2747, 2023 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-37711569

RESUMEN

A wider application of naturally derived polysaccharides is of great interest as materials for food packaging industry. Biocompatibility and biodegradability of polysaccharide-based films and coatings ally with a shift from application of non-biodegradable petrochemical polymers to the more environmentally friendly ones. Due to a range of inherent features in chemical structure and bioactivity, the polysaccharide materials could bring additional functionality to food packaging. The chelating ability of the polysaccharides provides also their application as carriers of additional active components, such as nanoparticles, essential oils and polyphenols. The improved physicochemical, antibacterial and antioxidant properties of the filled films allows to consider the edible polysaccharide-based films as functional food products. This review is aimed at analysis of evolution of polysaccharide-based food packaging materials from inert one starting from cellophane to recent research works on development of multicomponent polysaccharide-based functional food films and coatings.

2.
Polymers (Basel) ; 14(23)2022 Dec 01.
Artículo en Inglés | MEDLINE | ID: mdl-36501648

RESUMEN

Biodegradable polymeric fibrous non-woven materials are widely used type of scaffolds for tissue engineering. Their morphology and properties could be controlled by composition and fabrication technology. This work is aimed at development of fibrous scaffolds from a multicomponent polymeric system containing biodegradable synthetic (polylactide, polycaprolactone) and natural (gelatin, chitosan) components using different methods of non-woven mats fabrication: electrospinning and electro-assisted solution blow spinning. The effect of the fabrication technique of the fibrous materials onto their morphology and properties, including the ability to support adhesion and growth of cells, was evaluated. The mats fabricated using electrospinning technology consist of randomly oriented monofilament fibers, while application of solution blow spinning gave a rise to chaotically arranged multifilament fibers. Cytocompatibility of all fabricated fibrous mats was confirmed using in vitro analysis of metabolic activity, proliferative capacity and morphology of NIH 3T3 cell line. Live/Dead assay revealed the formation of the highest number of cell-cell contacts in the case of multifilament sample formed by electro-assisted solution blow spinning technology.

3.
Polymers (Basel) ; 14(22)2022 Nov 12.
Artículo en Inglés | MEDLINE | ID: mdl-36433013

RESUMEN

Enhancement of cell adhesion and growth on surface of the biodegradable materials is one of the important tasks in development of materials for regenerative medicine. This work focuses on comparison of various methods of collagen coating deposition onto polylactide films, aiming to increase their biocompatibility with human mesenchymal stromal cells. The collagen deposition was realized using either preliminary plasma treatment of the polylactide films or pre-swelling in solvent mixture. These techniques were compared in terms of the effect on the surface's chemical structure, morphology, hydrophilicity and ability to support adhesion and growth of human mesenchymal stromal cells.

4.
Polymers (Basel) ; 14(20)2022 Oct 13.
Artículo en Inglés | MEDLINE | ID: mdl-36297887

RESUMEN

Biodegradable polyester/hydroxyapatite microparticles are widely proposed as microcarriers for drug/cell delivery or scaffolds for bone tissue regeneration. The current research implements the surfactant-free approach for the fabrication of polyester-based microparticles filled with hydroxyapatite nanoparticles (nHA) via the oil/water Pickering emulsion solvent evaporation technique for the first time, to the best of our knowledge. The process of polyester microparticle fabrication using nHA for the oil/water interface stabilization was studied as a function of phase used for nHA addition, which allows the preparation of a range of microparticles either filled with nHA or having it as a shell over the polymeric core. The effect of processing conditions (polymer nature, polymer/nHA ratio, ultrasound treatment) on particles' total yield, size distribution, surface and volume morphology, and chemical structure was analyzed using SEM, EDX, Raman spectroscopy, and mapping. Addition of nHA either within the aqueous or oil phase allowed the effective stabilization of the oil/water interface without additional molecular surfactants, giving rise to hybrid microparticles in which total yield, size distribution, and surface morphology depended on all studied processing conditions. Preliminary ultrasound treatment of any phase before the emulsification process led to a complex effect but did not affect the homogeneity of nHA distribution within the polymeric core of the hybrid microparticles.

5.
Int J Mol Sci ; 23(18)2022 Sep 09.
Artículo en Inglés | MEDLINE | ID: mdl-36142370

RESUMEN

Taking into consideration the items of the Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA), this study reviews application of mechanochemical approaches to the modification of polysaccharides. The ability to avoid toxic solvents, initiators, or catalysts during processes is an important characteristic of the considered approach and is in line with current trends in the world. The mechanisms of chemical transformations in solid reactive systems during mechanical activation, the structure and physicochemical properties of the obtained products, their ability to dissolve and swell in different media, to form films and fibers, to self-organize in solution and stabilize nanodispersed inorganic particles and biologically active substances are considered using a number of polysaccharides and their derivatives as examples.


Asunto(s)
Polisacáridos , Catálisis , Solventes
6.
Polymers (Basel) ; 14(7)2022 Mar 24.
Artículo en Inglés | MEDLINE | ID: mdl-35406187

RESUMEN

Tissue engineering and cell therapy are very attractive in terms of potential applications but remain quite challenging regarding the clinical aspects. Amongst the different strategies proposed to facilitate their implementation in clinical practices, biodegradable microparticles have shown promising outcomes with several advantages and potentialities. This critical review aims to establish a survey of the most relevant materials and processing techniques to prepare these micro vehicles. Special attention will be paid to their main potential applications, considering the regulatory constraints and the relative easiness to implement their production at an industrial level to better evaluate their application in clinical practices.

7.
Polymers (Basel) ; 13(18)2021 Sep 09.
Artículo en Inglés | MEDLINE | ID: mdl-34577945

RESUMEN

Biodegradable polymeric microparticles are widely used in drug delivery systems with prolonged-release profiles and/or cell microcarriers. Their fabrication via the oil/water emulsion solvent evaporation technique has normally required emulsifiers in the aqueous phase. The present work aims to evaluate the effectiveness of various polysaccharides, such as chitosan, hyaluronic acid, cellulose, arabinogalactan, guar and their derivatives, as an alternative to synthetic surfactants for polylactide microparticle stabilization during their fabrication. Targeted modification of the biopolymer's chemical structure was also tested as a tool to enhance polysaccharides' emulsifying ability. The transformation of biomacromolecules into a form of nanoparticle via bottom-up or top-down methods and their subsequent application for microparticle fabrication via the Pickering emulsion solvent evaporation technique was useful as a one-step approach towards the preparation of core/shell microparticles. The effect of polysaccharides' chemical structure and the form of their application on the polylactide microparticles' total yield, size distribution and morphology was evaluated. The application of polysaccharides has great potential in terms of the development of green chemistry and the biocompatibility of the formed microparticles, which is especially important in biomedicine application.

8.
Polymers (Basel) ; 13(16)2021 Aug 21.
Artículo en Inglés | MEDLINE | ID: mdl-34451348

RESUMEN

Hydrophobic derivatives of polysaccharides possess an amphiphilic behavior and are widely used as rheological modifiers, selective sorbents, and stabilizers for compositions intended for various applications. In this work, we studied the mechanochemical reactions of chitosan alkylation when interacting with docosylglycidyl and hexadecylglycidyl ethers in the absence of solvents at shear deformation in a pilot twin-screw extruder. The chemical structure and physical properties of the obtained derivatives were characterized by elemental analysis, FT-IR spectroscopy, dynamic light scattering, scanning electron microscopy, and mechanical tests. According to calculations for products soluble in aqueous media, it was possible to introduce about 5-12 hydrophobic fragments per chitosan macromolecule with a degree of polymerization of 500-2000. The length of the carbon chain of the alkyl substituent significantly affects its reactivity under the chosen conditions of mechanochemical synthesis. It was shown that modification disturbs the packing ability of the macromolecules, resulting in an increase of plasticity and drop in the elastic modulus of the film made from the hydrophobically modified chitosan samples.

9.
Polymers (Basel) ; 12(9)2020 Aug 25.
Artículo en Inglés | MEDLINE | ID: mdl-32854227

RESUMEN

The mimicking of the architectonics of native tissue, biodegradable non-woven fibrous mats is one of the most promising forms of scaffolding for tissue engineering. The key properties needed for their successful application in vivo, such as biodegradability, biocompatibility, morphology, mechanical properties, etc., rely on their composition and appropriate 3D structure. A multicomponent system based on biodegradable synthetic (polycaprolactone, oligo-/polylactide) and natural (chitosan, gelatin) polymers, providing the desired processing characteristics and functionality to non-woven mats fabricated via the electrospinning technique, was developed. The solid-state reactive blending of these components provided a one-step synthesis of amphiphilic graft copolymer with an ability to form stable ultra-fine dispersions in chlorinated solvents, which could be successfully used as casting solvents for the electrospinning technique. The synthesized graft copolymer was analyzed with the aim of fractional analysis, dynamic laser scattering, FTIR-spectroscopy and DSC. Casting solution characteristics, namely viscosity, surface tension, and electroconductivity, as well as electrospinning parameters, were studied and optimized. The morphology, chemical structure of the surface layer, mechanical properties and cytocompatibility were analyzed to confirm the appropriate functionality of the formed fibrous materials as scaffolds for tissue engineering.

10.
Molecules ; 25(8)2020 Apr 22.
Artículo en Inglés | MEDLINE | ID: mdl-32331458

RESUMEN

Self-stabilizing biodegradable microcarriers were produced via an oil/water solvent evaporation technique using amphiphilic chitosan-g-polyester copolymers as a core material in oil phase without the addition of any emulsifier in aqueous phase. The total yield of the copolymer-based microparticles reached up to 79 wt. %, which is comparable to a yield achievable using traditional emulsifiers. The kinetics of microparticle self-stabilization, monitored during their process, were correlated to the migration of hydrophilic copolymer's moieties to the oil/water interface. With a favorable surface/volume ratio and the presence of bioadhesive natural fragments anchored to their surface, the performance of these novel microcarriers has been highlighted by evaluating cell morphology and proliferation within a week of cell cultivation in vitro.


Asunto(s)
Materiales Biocompatibles/química , Quitosano/química , Microesferas , Poliésteres/química , Polímeros/química , Fibroblastos , Ingeniería de Tejidos
11.
Tissue Eng Part A ; 26(17-18): 953-963, 2020 09.
Artículo en Inglés | MEDLINE | ID: mdl-32159465

RESUMEN

We evaluated the applicability of chitosan-g-oligo(L,L-lactide) copolymer (CLC) hydrogel for central nervous system tissue engineering. The biomechanical properties of the CLC hydrogel were characterized and its biocompatibility was assessed with neural progenitor cells obtained from two different sources: H9-derived neural stem cells (H9D-NSCs) and directly reprogrammed neural precursor cells (drNPCs). Our study found that the optically transparent CLC hydrogel possessed biomechanical characteristics suitable for culturing human neural stem/precursor cells and was noncytotoxic. When seeded on films prepared from CLC copolymer hydrogel, both H9D-NSC and drNPC adhered well, expanded and exhibited signs of spontaneous differentiation. While H9D-NSC mainly preserved multipotency as shown by a high proportion of Nestin+ and Sox2+ cells and a comparatively lower expression of the neuronal markers ßIII-tubulin and MAP2, drNPCs, obtained by direct reprogramming, differentiated more extensively along the neuronal lineage. Our study indicates that the CLC hydrogel may be considered as a substrate for tissue-engineered constructs, applicable for therapy of neurodegenerative diseases. Impact statement We synthetized a chitosan-g-oligo(L,L-lactide) hydrogel that sustained multipotency of embryonic-derived neural stem cells (NSCs) and supported differentiation of directly reprogrammed NSC predominantly along the neuronal lineage. The hydrogel exhibited no cytotoxicity in vitro, both in extraction and contact cytotoxicity tests. When seeded on the hydrogel, both types of NSCs adhered well, expanded, and exhibited signs of spontaneous differentiation. The biomechanical properties of the hydrogel were similar to that of human spinal cord with incised pia mater. These data pave the way for further investigations of the hydrogel toward its applicability in central nervous system tissue engineering.


Asunto(s)
Quitosano , Hidrogeles , Células-Madre Neurales , Diferenciación Celular , Células Cultivadas , Dioxanos , Humanos , Células-Madre Neurales/citología
12.
Polymers (Basel) ; 12(3)2020 Mar 07.
Artículo en Inglés | MEDLINE | ID: mdl-32156039

RESUMEN

Graft copolymers of chitosan with cellulose ether have been obtained by the solid-state reactive mixing of chitin, sodium hydroxide and hydroxyethyl cellulose under shear deformation in a pilot twin-screw extruder. The structure and composition of the products were determined by elemental analysis and IR spectroscopy. The physicochemical properties of aqueous solutions of copolymers were studied as a function of the composition, and were correlated to the mechanical characteristics of the resulting films to assess the performance of new copolymers as coating materials, non-woven fibrous materials or emulsifiers for interface stabilization during the microparticle fabrication process.

13.
Materials (Basel) ; 13(3)2020 Jan 21.
Artículo en Inglés | MEDLINE | ID: mdl-31973191

RESUMEN

Plasma treatment is one of the most promising tools to control surface properties of materials tailored for biomedical application. Among a variety of processing conditions, such as the nature of the working gas and time of treatment, discharge type is rarely studied, because it is mainly fixed by equipment used. This study aimed to investigate the effect of discharge type (direct vs. alternated current) using air as the working gas on plasma treatment of poly(ethylene terephthalate) films, in terms of their surface chemical structure, morphology and properties using X-ray photoelectron spectroscopy, scanning electron microscopy, atomic force microscopy and contact angle measurements. The effect of the observed changes in terms of subsequent chitosan immobilization on plasma-treated films was also evaluated. The ability of native, plasma-treated and chitosan-coated films to support adhesion and growth of mesenchymal stem cells was studied to determine the practicability of this approach for the biomedical application of poly(ethylene terephthalate) films.

14.
Cell Prolif ; 52(3): e12598, 2019 May.
Artículo en Inglés | MEDLINE | ID: mdl-30900363

RESUMEN

OBJECTIVES: The conversion of tissue engineering into a routine clinical tool cannot be achieved without a deep understanding of the interaction between cells and scaffolds during the process of tissue formation in an artificial environment. Here, we have investigated the cultivation conditions and structural features of the biodegradable non-woven material in order to obtain a well-differentiated human airway epithelium. MATERIALS AND METHODS: The bilayered scaffold was fabricated by electrospinning technology. The efficiency of the scaffold has been evaluated using MTT cell proliferation assay, histology, immunofluorescence and electron microscopy. RESULTS: With the use of a copolymer of chitosan-gelatin-poly-l-lactide, a bilayered non-woven scaffold was generated and characterized. The optimal structural parameters of both layers for cell proliferation and differentiation were determined. The basal airway epithelial cells differentiated into ciliary and goblet cells and formed pseudostratified epithelial layer on the surface of the scaffold. In addition, keratinocytes formed a skin equivalent when seeded on the same scaffold. A comparative analysis of growth and differentiation for both types of epithelium was performed. CONCLUSIONS: The structural parameters of nanofibres should be selected experimentally depending on polymer composition. The major challenges on the way to obtain the well-differentiated equivalent of respiratory epithelium on non-woven scaffold include the following: the balance between scaffold permeability and thickness, proper combination of synthetic and natural components, and culture conditions sufficient for co-culturing of airway epithelial cells and fibroblasts. For generation of skin equivalent, the lack of diffusion is not so critical as for pseudostratified airway epithelium.


Asunto(s)
Ingeniería de Tejidos/métodos , Andamios del Tejido , Tráquea/citología , Materiales Biocompatibles/química , Fenómenos Biomecánicos , Diferenciación Celular , Supervivencia Celular , Células Cultivadas , Quitosano/química , Técnicas de Cocultivo , Células Epiteliales/citología , Fibroblastos/citología , Gelatina/química , Humanos , Queratinocitos/citología , Ensayo de Materiales , Microscopía Electrónica de Rastreo , Nanofibras/química , Nanofibras/ultraestructura , Poliésteres/química , Andamios del Tejido/química , Tráquea/crecimiento & desarrollo , Tráquea/fisiología
15.
Mar Drugs ; 17(1)2019 Jan 10.
Artículo en Inglés | MEDLINE | ID: mdl-30634710

RESUMEN

The crustacean processing industry produces large quantities of waste by-products (up to 70%). Such wastes could be used as raw materials for producing chitosan, a polysaccharide with a unique set of biochemical properties. However, the preparation methods and the long-term stability of chitosan-based products limit their application in biomedicine. In this study, different scale structures, such as aggregates, photo-crosslinked films, and 3D scaffolds based on mechanochemically-modified chitosan derivatives, were successfully formed. Dynamic light scattering revealed that aggregation of chitosan derivatives becomes more pronounced with an increase in the number of hydrophobic substituents. Although the results of the mechanical testing revealed that the plasticity of photo-crosslinked films was 5⁻8% higher than that for the initial chitosan films, their tensile strength remained unchanged. Different types of polymer scaffolds, such as flexible and porous ones, were developed by laser stereolithography. In vivo studies of the formed structures showed no dystrophic and necrobiotic changes, which proves their biocompatibility. Moreover, the wavelet analysis was used to show that the areas of chitosan film degradation were periodic. Comparing the results of the wavelet analysis and X-ray diffraction data, we have concluded that degradation occurs within less ordered amorphous regions in the polymer bulk.


Asunto(s)
Materiales Biocompatibles , Quitosano/química , Ingeniería de Tejidos , Animales , Conformación de Carbohidratos , Quitosano/análogos & derivados , Ensayo de Materiales , Porosidad , Ratas , Ratas Wistar , Resistencia a la Tracción , Andamios del Tejido
16.
RSC Adv ; 9(36): 20968-20975, 2019 Jul 01.
Artículo en Inglés | MEDLINE | ID: mdl-35515576

RESUMEN

The solvent-free synthesis of allyl-substituted chitosan derivatives through reactive co-extrusion of chitosan powder with allyl bromide at shear deformation was performed. For the structural characterization, FTIR and NMR methods were employed. The results were confirmed by chemical analysis. The total content of allyl substituents from 5 to 50 per 100 chitosan units as a function of the component ratio in the reactive mixtures was revealed. Carrying out the reaction without any additives leads to the selective formation of N-alkylated derivatives, whereas in the presence of alkali the ethers of chitosan were preferentially formed. The results suggest that the proposed approach allows significantly higher yield of products to be obtained at high process speeds and significantly lower reagent consumption as compared with the liquid-phase synthesis in organic medium. The synthesized unsaturated derivatives are promising photosensitive components for use in laser stereolithography for fabrication of three-dimensional biocompatible structures with well-defined architectonics.

17.
RSC Adv ; 9(64): 37652-37659, 2019 Nov 13.
Artículo en Inglés | MEDLINE | ID: mdl-35542266

RESUMEN

Graft-copolymers based on bioresorbable synthetic (oligo-/polylactide) and natural (chitosan and collagen/gelatin) components were synthesized through solid-state reactive co-extrusion and used for fabrication of fibrous non-woven mats via the electrospinning technique. The effect of the macromolecular features of the initial components on the copolymer characteristics was evaluated using FTIR-spectroscopy, differential scanning calorimetry and elemental analysis. Dynamic light scattering analysis showed that the copolymers have a tendency to form stable ultra-fine dispersions with a mean size of macromolecular aggregates of 150 nm within chlorinated solvents. The copolymer-containing non-woven fibrous mats were fabricated via an electrospinning procedure using chloroform as a solvent. An effect of the copolymer composition on the casting solution's viscosity, conductivity and surface tension was evaluated. Scanning electron microscopy showed that the obtained mats consist of randomly distributed fibers with a mean size of ∼5 µm and a more complex morphology than mats fabricated from neat polylactide. The proposed mechanochemical approach to obtain hybrid copolymeric compositions differs from typical liquid-phase methods in terms of high efficiency, simplicity and cleanness.

18.
Polymers (Basel) ; 9(7)2017 Jul 24.
Artículo en Inglés | MEDLINE | ID: mdl-30970980

RESUMEN

Chitosan-g-oligolactide copolymers with relatively long oligolactide grafted chains of various stereochemical compositions have been synthetized via a solvent-free mechanochemical technique and tailored to fabricate three-dimensional hydrogels using two-photon induced microstereolithography. An effect of the characteristics of chitosan and oligolactide used for the synthesis on the grafting yield and copolymer's behavior were evaluated using fractional analysis, FTIR-spectroscopy, dynamic light scattering, and UV-spectrophotometry. The lowest copolymer yield was found for the system based on chitosan with higher molecular weight, while the samples consisting of low-molecular weight chitosan showed higher grafting degrees, which were comparable in both the cases of l,l- or l,d-oligolactide grafting. The copolymer processability in the course of two-photon stereolithography was evaluated as a function of the copolymer's characteristics and stereolithography conditions. The structure and mechanical properties of the model film samples and fabricated 3D hydrogels were studied using optical and scanning electron microscopy, as well as by using tensile and nanoindenter devices. The application of copolymer with oligo(l,d-lactide) side chains led to higher processability during two-photon stereolithography in terms of the response to the laser beam, reproduction of the digital model, and the mechanical properties of the fabricated hydrogels.

19.
J Mater Sci Mater Med ; 27(9): 141, 2016 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-27539011

RESUMEN

The presented paper is focused on impregnation of chitosan and its derivatives with a biologically active triaryl imidazole model compound ((2-2-hydroxyphenyl)-4.5-diphenyl-1H-imidazole) in the supercritical carbon dioxide medium. Since initial chitosan represents a polycation-exchange resin and does not swell in supercritical carbon dioxide, the impregnation was carried out in the presence of water (0.15-3.0 vol%). The maximum 2-2-hydroxyphenyl)-4.5-diphenyl-1H-imidazole concentration in a chitosan film was achieved at the ~5 × 10(-3) g/cm(3) water content in the reactor. We also used hydroxy carboxylic acid derivatives of chitosan and its copolymer with polylactide as matrices for introduction of hydrophobic 2-2-hydroxyphenyl)-4.5-diphenyl-1H-imidazole. We have shown that unmodified chitosan contains the greatest amount of 2-2-hydroxyphenyl)-4.5-diphenyl-1H-imidazole, as compared with its hydrophobic derivatives. The kinetics of 2-2-hydroxyphenyl)-4.5-diphenyl-1H-imidazole diffusion from a chitosan matrix was studied in acidified water with pH 1.6. We found that the complete release of 2-2-hydroxyphenyl)-4.5-diphenyl-1H-imidazole into the aqueous phase from unmodified chitosan films occurred in 48 h, while its complete release from chitosan modified with hydroxy carboxylic acids occurred in 5 min or less.


Asunto(s)
Dióxido de Carbono/química , Quitosano/química , Imidazoles/química , Materiales Biocompatibles/química , Ácidos Carboxílicos/química , Cationes , Difusión , Sistemas de Liberación de Medicamentos , Tecnología Química Verde , Concentración de Iones de Hidrógeno , Cinética , Luminiscencia , Polímeros/química , Presión , Solventes/química , Espectrofotometría Ultravioleta , Temperatura , Agua/química
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA