Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
J Phys Chem B ; 122(44): 10097-10107, 2018 11 08.
Artículo en Inglés | MEDLINE | ID: mdl-30351114

RESUMEN

Energetics, protein dynamics, and electronic coupling are the key factors in controlling both electron and energy transfer in photosynthetic bacterial reaction centers (RCs). Here, we examine the rates and mechanistic pathways of the P+HA- radical-pair charge recombination, triplet state formation, and subsequent triplet energy transfer from the triplet state of the bacteriochlorophyll dimer (P) to the carotenoid in a series of mutant RCs (L131LH + M160LH (D1), L131LH + M197FH (D2), and L131LH + M160LH + M197FH (T1)) of Rhodobacter sphaeroides. In these mutants, the electronic structure of P is perturbed and the P/P+ midpoint potential is systematically increased due to addition of hydrogen bonds between P and the introduced residues. High-resolution, broad-band, transient absorption spectroscopy on the femtosecond to microsecond timescale shows that the charge recombination rate increases and the triplet energy transfer rate decreases in these mutants relative to the wild type (WT). The increase of the charge recombination rate is correlated to the increase in the energy level of P+HA- and the increase in the P/P+ midpoint potential. On the other hand, the decrease in rate of triplet energy transfer in the mutants can be explained in terms of a lower energy of 3P and a shift in the electron spin density distribution in the bacteriochlorophylls of P. The triplet energy-transfer rate follows the order of WT > L131LH + M197FH > L131LH + M160LH > L131LH + M160LH + M197FH, both at room temperature and at 77 K. A pronounced temperature dependence of the rate is observed for all of the RC samples. The activation energy associated to this process is increased in the mutants relative to WT, consistent with a lower 3P energy due to the addition of hydrogen bonds between P and the introduced residues.


Asunto(s)
Proteínas Bacterianas/química , Proteínas del Complejo del Centro de Reacción Fotosintética/química , Proteínas Bacterianas/genética , Carotenoides/química , Transferencia de Energía , Enlace de Hidrógeno , Cinética , Mutación , Proteínas del Complejo del Centro de Reacción Fotosintética/genética , Rhodobacter sphaeroides/química , Temperatura , Termodinámica
2.
ChemSusChem ; 10(22): 4457-4460, 2017 11 23.
Artículo en Inglés | MEDLINE | ID: mdl-28929590

RESUMEN

Three- to four-times higher performance of biohybrid photoelectrochemical cells with photosynthetic reaction centers (RC) has been achieved by using a DNA-based biomimetic antenna. Synthetic dyes Cy3 and Cy5 were chosen and strategically placed in the anntena in such a way that they can collect additional light energy in the visible region of the solar spectrum and transfer it to RC through Förster resonance energy transfer (FRET). The antenna, a DNA templated multiple dye system, is attached to each Rhodobacter sphaeroides RC near the primary donor, P, to facilitate the energy transfer process. Excitation with a broad light spectrum (approximating sunlight) triggers a cascade of excitation energy transfer from Cy3 to Cy5 to P, and also directly from Cy5 to P. This additional excitation energy increases the RC absorbance cross-section in the visible and thus the performance of the photoelectrochemical cells. DNA-based biomimetic antennas offer a tunable, modular light-harvesting system for enhancing RC solar coverage and performance for photoelectrochemical cells.


Asunto(s)
ADN/química , Proteínas del Complejo del Centro de Reacción Fotosintética/química , Materiales Biomiméticos , Electricidad , Transferencia de Energía , Colorantes Fluorescentes/química , Estructura Molecular , Fotosíntesis , Rhodobacter sphaeroides , Energía Solar , Relación Estructura-Actividad , Luz Solar
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...