Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
Int J Biol Macromol ; 274(Pt 1): 133295, 2024 Jun 22.
Artículo en Inglés | MEDLINE | ID: mdl-38914398

RESUMEN

The stability and bioavailability of green tea polyphenols, crucial for their health benefits, are compromised by environmental sensitivity, limiting their use in functional foods and supplements. This study introduces a novel water-in-oil-in-water double emulsion technique with microwave-assisted extraction, significantly enhancing the stability and bioavailability of these compounds. The primary objective of this study was to assess the effectiveness of several encapsulating agents, such as gum Arabic as control and native and modified starches, in improving encapsulated substances' stability and release control. Native and modified starches were chosen for their outstanding film-forming properties, improving encapsulation efficiency and protecting bioactive compounds from oxidative degradation. The combination of maltodextrin and tapioca starch improved phenolic content retention, giving 46.25 ± 2.63 mg/g in tapioca starch microcapsules (GTTA) and 41.73 ± 3.24 mg/g in gum arabic microcapsules (GTGA). Besides the control, modified starches also had the most potent antioxidant activity, with a 45 % inhibition (inh%) in the DPPH analysis. Oat oil was utilized for its superior viscosity and nutritional profile, boosting emulsion stability and providing the integrity of the encapsulated polyphenols, as indicated by the microcapsules' narrow span index (1.30 ± 0.002). The microcapsules' thermal behavior and structural integrity were confirmed using advanced methods such as Differential Scanning Calorimetry (DSC) and Fourier-Transform Infrared Spectroscopy (FT-IR). This study highlights the critical role of choosing appropriate wall materials and extraction techniques. It sets a new standard for microencapsulation applications in the food industry, paving the way for future innovations.

2.
J Sep Sci ; 47(9-10): e2400142, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38726732

RESUMEN

Catechins, renowned for their antioxidant properties and health benefits, are commonly present in beverages, particularly tea and wine. An efficient and cost-effective salting-out assisted liquid-liquid extraction (SALLE) method has been developed and validated for the simultaneous determination of six catechins and caffeine in tea and wine samples using high-performance liquid chromatography-ultraviolet (HPLC-UV). This method demonstrates outstanding performance: linearity (1-120 µg/mL, r2 > 0.999), accuracy (96.5%-103.4% recovery), and precision (≤14.7% relative standard deviation), meeting validation requirements set by the US Food and Drug Administration. The reduced sample size (0.1 g) minimizes matrix interferences and costs without compromising sensitivity. All analytes were detected in Camellia sinensis teas, with green tea displaying the highest total catechin content (47.5-100.1 mg/mL), followed by white and black teas. Analysis of wine samples reveals the presence of catechin in all red and white wines, and epigallocatechin gallate in all red wine samples, highlighting the impact of winemaking processes on catechin content. The SALLE-HPLC-UV approach represents a green alternative by eliminating organic waste, surpassing conventional dilution methods in specificity and sensitivity for catechin determination. AGREEprep assessment emphasizes the strengths of the SALLE procedure, including material reusability, throughput efficiency, minimal sample requirements, low energy consumption, and the absence of organic waste generation.


Asunto(s)
Cafeína , Catequina , Extracción Líquido-Líquido , , Vino , Cromatografía Líquida de Alta Presión/métodos , Vino/análisis , Cafeína/análisis , Catequina/análisis , Té/química , Extracción Líquido-Líquido/métodos , Espectrofotometría Ultravioleta , Rayos Ultravioleta
3.
Molecules ; 29(8)2024 Apr 11.
Artículo en Inglés | MEDLINE | ID: mdl-38675555

RESUMEN

Anthocyanins, a subclass of flavonoids known for their vibrant colors and health-promoting properties, are pivotal in the nutritional science and food industry. This review article delves into the analytical methodologies for anthocyanin detection and quantification in food matrices, comparing quantitative and topical techniques. Quantitative methods, including High-performance Liquid Chromatography (HPLC) and Mass Spectrometry (MS), offer precise quantification and profiling of individual anthocyanins but require sample destruction, limiting their use in continuous quality control. Topical approaches, such as Near-infrared Spectroscopy (NIR) and hyperspectral imaging, provide rapid, in situ analysis without compromising sample integrity, ideal for on-site food quality assessment. The review highlights the advancements in chromatographic techniques, particularly Ultra-high-performance Liquid Chromatography (UHPLC) coupled with modern detectors, enhancing resolution and speed in anthocyanin analysis. It also emphasizes the growing importance of topical techniques in the food industry for their efficiency and minimal sample preparation. By examining the strengths and limitations of both analytical realms, this article aims to shed light on current challenges and prospective advancements, providing insights into future research directions for improving anthocyanin analysis in foods.


Asunto(s)
Antocianinas , Análisis de los Alimentos , Antocianinas/análisis , Antocianinas/química , Cromatografía Líquida de Alta Presión/métodos , Análisis de los Alimentos/métodos , Espectrometría de Masas/métodos , Espectroscopía Infrarroja Corta/métodos
4.
Food Chem ; 444: 138629, 2024 Jun 30.
Artículo en Inglés | MEDLINE | ID: mdl-38341914

RESUMEN

Deep Eutectic Solvents (DESs) offer a promising, sustainable alternative for extracting polyphenols from food plants, known for their health benefits. Traditional extraction methods are often costly and involve toxic solvents. This review discusses the basic concepts, preparation techniques, and factors influencing the effective and safe use of DESs in polyphenol extraction. DESs' adaptability allows integration with other green extraction technologies, such as microwave- and ultrasound-assisted extractions, enhancing their efficiency. This adaptability demonstrates the potential of DESs in the sustainable extraction of bioactive compounds. Current research indicates that DESs could play a significant role in the sustainable procurement of these compounds, marking an important advancement in food science research and development. The review underscores DESs as a realistic, eco-friendly alternative in the realm of natural extraction technologies, offering a significant contribution to sustainable practices in food science.


Asunto(s)
Disolventes Eutécticos Profundos , Polifenoles , Polifenoles/análisis , Plantas Comestibles , Solventes
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...