RESUMEN
Multi-omic analysis deciphers the impact of cell-intrinsic and systemic metabolomes on dengue vaccination immunogenicity.
Asunto(s)
Vacunas contra el Dengue , Virus del Dengue , Dengue , Vacunas contra el Dengue/inmunología , Humanos , Dengue/prevención & control , Dengue/inmunología , Virus del Dengue/inmunología , Vacunación , Animales , Metaboloma/inmunologíaRESUMEN
Platelets play an essential role in thrombotic processes. Recent studies suggest a direct link between increased plasma glucose, lipids, and inflammatory cytokines with platelet activation and aggregation, resulting in an increased risk of atherothrombotic events in cardiovascular patients. Antiplatelet therapies are commonly used for the primary prevention of atherosclerosis. Transitioning from a population-based strategy to patient-specific care requires a better understanding of the risks and advantages of antiplatelet therapy for individuals. This proof-of-concept study evaluates the potential to assess an individual's risk of forming atherothrombosis using a dual-channel microfluidic model emulating multiple atherogenic factors in vitro, including high glucose, high cholesterol, and inflammatory cytokines along with stenosis vessel geometry. The model shows precise sensitivity toward increased plasma glucose, cholesterol, and tumour necrosis factor-alpha (TNF-α)-treated groups in thrombus formation. An in vivo-like dose-dependent increment in platelet aggregation is observed in different treated groups, benefiting the evaluation of thrombosis risk in the individual condition. Moreover, the model could help decide the effective dosing of aspirin in multi-factorial complexities. In the high glucose-treated group, a 50 µM dose of aspirin could significantly reduce platelet aggregation, while a 100 µM dose of aspirin was required to reduce platelet aggregation in the glucose-TNF-α-treated group, which proves the model's potentiality as a tailored tool for customised therapy.
Asunto(s)
Dispositivos Laboratorio en un Chip , Agregación Plaquetaria , Trombosis , Trombosis/tratamiento farmacológico , Trombosis/prevención & control , Humanos , Agregación Plaquetaria/efectos de los fármacos , Inhibidores de Agregación Plaquetaria/farmacología , Factor de Necrosis Tumoral alfa/sangre , Factor de Necrosis Tumoral alfa/metabolismo , Aterosclerosis/tratamiento farmacológico , Aspirina , Plaquetas/efectos de los fármacos , Plaquetas/citologíaRESUMEN
Monocyte recruitment and transmigration are crucial in atherosclerotic plaque development. The multi-disease complexities aggravate the situation and continue to be a constant concern for understanding atherosclerosis plaque development. Herein, a 3D hydrogel-based model that integrates disease-induced microenvironments is sought to be designed, allowing us to explore the early stages of atherosclerosis, specifically examining monocyte fate in multi-disease complexities. As a proof-of-concept study, murine cells are employed to develop the model. The model is constructed with collagen embedded with murine aortic smooth muscle cells and a murine endothelial monolayer lining. The model achieves in vitro disease complexities using external stimuli such as glucose and lipopolysaccharide (LPS). Hyperglycemia exhibits a significant increase in monocyte adhesion but no enhancement in monocyte transmigration and foam cell conversion compared to euglycemia. Chronic infection achieved by LPS stimulation results in a remarkable augment in initial monocyte attachment and a significant increment in monocyte transmigration and foam cells in all concentrations. Moreover, the model exhibits synergistic sensitivity under multi-disease conditions such as hyperglycemia and infection, enhancing initial monocyte attachment, cell transmigration, and foam cell formation. Additionally, western blot data prove the enhanced levels of inflammatory biomarkers, indicating the model's capability to mimic disease-induced complexities during early atherosclerosis progression.
Asunto(s)
Aterosclerosis , Hiperglucemia , Placa Aterosclerótica , Animales , Ratones , Células Espumosas/metabolismo , Hidrogeles , Lipopolisacáridos/farmacología , Lipopolisacáridos/metabolismo , Aterosclerosis/metabolismo , Placa Aterosclerótica/metabolismoRESUMEN
Angiotensin-converting enzyme 2 (ACE2) is protective in cardiovascular disease, lung injury and diabetes yet paradoxically underlies our susceptibility to SARs-CoV2 infection and the fatal heart and lung disease it can induce. Furthermore, diabetic patients have chronic, systemic inflammation and altered ACE2 expression resulting in increased risk of severe COVID-19 and the associated mortality. A drug that could increase ACE2 activity and inhibit cellular uptake of severe acute respiratory syndrome coronavirus 2 (SARs-CoV2), thus decrease infection, would be of high relevance to cardiovascular disease, diabetes and SARs-CoV2 infection. While the need for such a drug lead was highlighted over a decade ago receiving over 600 citations,1 to date, no such drugs are available.2 Here, we report the development of a novel ACE2 stimulator, designated '2A'(international PCT filed), which is a 10 amino acid peptide derived from a snake venom, and demonstrate its in vitro and in vivo efficacy against SARs-CoV2 infection and associated lung inflammation. Peptide 2A also provides remarkable protection against glycaemic dysregulation, weight loss and disease severity in a mouse model of type 1 diabetes. No untoward effects of 2A were observed in these pre-clinical models suggesting its strong clinical translation potential.
RESUMEN
Thrombosis and its complications are responsible for 30% of annual deaths. Limitations of methods for diagnosing and treating thrombosis highlight the need for improvements. Agents that provide simultaneous diagnostic and therapeutic activities (theranostics) are paramount for an accurate diagnosis and rapid treatment. In this study, silver-iron oxide nanoparticles (AgIONPs) are developed for highly efficient targeted photothermal therapy and imaging of thrombosis. Small iron oxide nanoparticles are employed as seeding agents for the generation of a new class of spiky silver nanoparticles with strong absorbance in the near-infrared range. The AgIONPs are biofunctionalized with binding ligands for targeting thrombi. Photoacoustic and fluorescence imaging demonstrate the highly specific binding of AgIONPs to the thrombus when functionalized with a single chain antibody targeting activated platelets. Photothermal thrombolysis in vivo shows an increase in the temperature of thrombi and a full restoration of blood flow for targeted group but not in the non-targeted group. Thrombolysis from targeted groups is significantly improved (p < 0.0001) in comparison to the standard thrombolytic used in the clinic. Assays show no apparent side effects of AgIONPs. Altogether, this work suggests that AgIONPs are potential theranostic agents for thrombosis.
Asunto(s)
Nanopartículas del Metal , Nanopartículas , Trombosis , Humanos , Terapia Fototérmica , Plata , Nanopartículas del Metal/uso terapéutico , Trombosis/diagnóstico por imagen , Trombosis/terapia , Imagen Multimodal/métodos , Nanopartículas Magnéticas de Óxido de Hierro , Nanomedicina Teranóstica/métodos , Fototerapia/métodosRESUMEN
Atherothrombosis, an atherosclerotic plaque disruption condition with superimposed thrombosis, is the underlying cause of cardiovascular episodes. Herein, a unique design is presented to develop a microfluidic site-specific atherothrombosis-on-chip model, providing a universal platform for studying the crosstalk between blood cells and plaque components. The device consists of two interconnected microchannels, namely main and supporting channels: the former mimics the vessel geometry with different stenosis, and the latter introduces plaque components to the circulation simultaneously. The unique design allows the site-specific introduction of plaque components in stenosed channels ranging from 0% to above 50%, resulting in thrombosis, which has not been achieved previously. The device successfully explains the correlation between vessel geometry and thrombus formation phenomenon as well as the influence of shear rate on platelet aggregation, confirming the reliability and the effectiveness of the design. The device exhibits significant sensitivity to aspirin. In therapeutic doses (50 × 10-6 and 100 × 10-6 m), aspirin delays and prevents platelet adhesion, thereby reducing the thrombus area in a dose-dependent manner. Finally, the device is effectively employed in testing the targeted binding of the RGD (arginyl-glycyl-aspartic acid) labeled polymeric nanoparticles on the thrombus, extending the use of the device to examine targeted drug carriers.
Asunto(s)
Placa Aterosclerótica , Trombosis , Aspirina , Descubrimiento de Drogas , Humanos , Microfluídica , Placa Aterosclerótica/tratamiento farmacológico , Reproducibilidad de los Resultados , Trombosis/tratamiento farmacológicoRESUMEN
Microfluidic lab-on-a-chip cell culture techniques have been gaining popularity by offering the possibility of reducing the amount of samples and reagents and greater control over cellular microenvironment. Polydimethylsiloxane (PDMS) is the commonly used polymer for microfluidic cell culture devices because of the cheap and easy fabrication techniques, non-toxicity, biocompatibility, high gas permeability, and optical transparency. However, the intrinsic hydrophobic nature of PDMS makes cell seeding challenging when applied on PDMS surface. The hydrophobicity of the PDMS surface also allows the non-specific absorption/adsorption of small molecules and biomolecules that might affect the cellular behaviour and functions. Hydrophilic modification of PDMS surface is indispensable for successful cell seeding. This review collates different techniques with their advantages and disadvantages that have been used to improve PDMS hydrophilicity to facilitate endothelial cells seeding in PDMS devices.
Asunto(s)
Dimetilpolisiloxanos/química , Dispositivos Laboratorio en un Chip , Adsorción , Técnicas de Cultivo de Célula , Humanos , Interacciones Hidrofóbicas e Hidrofílicas , Técnicas Analíticas Microfluídicas , PermeabilidadRESUMEN
Hydrogel-based artificial scaffolds play a vital role in shifting in vitro models from two-dimensional (2D) cell culture to three-dimensional (3D) cell culture. Microfluidic 3D cell culture systems with a hydrogel matrix encourage biomedical researchers to replace in vivo models with 3D in vitro models with a cellular microenvironment that resembles physiological conditions with greater fidelity. Hydrogels can be designed as an artificial extracellular matrix scaffold for providing spatial orientation and promoting cellular interactions with surroundings. Selecting the appropriate hydrogels and their fabrication techniques are the key to mimic the in vivo mechanical environment. Moreover, combining a microfluidic technique with a hydrogel-based 3D cell culture system can create a complex and controlled microenvironment for the cells by placing small biosamples inside the microchannel. This paper provides an overview of the structural similarities of the hydrogels as an extracellular matrix (ECM), their classification and fabrication techniques as an ECM, and their use in microfluidic 3D cell culture systems. Finally, the paper presents the current challenges and future perspectives of using hydrogel scaffolds in microfluidic 3D cell culture systems.