Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
Expert Opin Drug Metab Toxicol ; 20(6): 503-517, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38753451

RESUMEN

INTRODUCTION: The 24-hour variations in drug absorption, distribution, metabolism, and elimination, collectively known as pharmacokinetics, are fundamentally influenced by rhythmic physiological processes regulated by the molecular clock. Recent advances have elucidated the intricacies of the circadian timing system and the molecular interplay between biological clocks, enzymes and transporters in preclinical level. AREA COVERED: Circadian rhythm of the drug metabolizing enzymes and carrier efflux functions possess a major role for drug metabolism and detoxification. The efflux and metabolism function of intestines and liver seems important. The investigations revealed that the ABC and SLC transporter families, along with cytochrome p-450 systems in the intestine, liver, and kidney, play a dominant role in the circadian detoxification of drugs. Additionally, the circadian control of efflux by the blood-brain barrier is also discussed. EXPERT OPINION: The influence of the circadian timing system on drug pharmacokinetics significantly impacts the efficacy, adverse effects, and toxicity profiles of various drugs. Moreover, the emergence of sex-related circadian changes in the metabolism and detoxification processes has underscored the importance of considering gender-specific differences in drug tolerability and pharmacology. A better understanding of coupling between central clock and circadian metabolism/transport contributes to the development of more rational drug utilization and the implementation of chronotherapy applications.


Asunto(s)
Ritmo Circadiano , Inactivación Metabólica , Humanos , Ritmo Circadiano/fisiología , Animales , Preparaciones Farmacéuticas/metabolismo , Preparaciones Farmacéuticas/administración & dosificación , Relojes Circadianos/fisiología , Barrera Hematoencefálica/metabolismo , Femenino , Sistema Enzimático del Citocromo P-450/metabolismo , Hígado/metabolismo , Cronoterapia de Medicamentos , Masculino , Factores Sexuales
2.
Artículo en Inglés | MEDLINE | ID: mdl-38500383

RESUMEN

BACKGROUND: Everolimus is an oral mammalian target of rapamycin (mTOR) inhibitor used as an immunosuppressant and anticancer. Its pharmacokinetics is highly variable, it has a narrow therapeutic window and shows chronotoxicity with the best time at ZT13 and worst time at ZT1 (ZT; Zeitgeber time, time after light onset) in the preclinical setting. OBJECTIVES: In the present study, we aimed to investigate whether the pharmacokinetics of everolimus vary according to dosing time and whether sex and feeding status interfere with the chronopharmacokinetics. METHOD: A single dosage of 5 mg/kg everolimus was administered orally to C57BL/6J male and female mice, in fed or fasted states at ZT1-rest and ZT13-activity times and blood and tissue samples were collected at 0.5, 1, 2, 4, 12, and 24 h following drug administration. Ileum, liver, plasma, and thymus concentrations of everolimus were determined. RESULTS: Females had a greater ileum AUC0-24h than males when fed (P = 0.043). Everolimus AUC0-24h in the liver was substantially greater at ZT1 than at ZT13 in a fasted state (P = 0.001). Plasma Cmax , AUC0-24h , and AUCtotal were not statistically significant between the groups (P = 0.098). In one of the target organs of everolimus, the thymus, males had considerably higher amounts at ZT1 than females (P = 0.029). CONCLUSION: Our findings imply that the pharmacokinetics of everolimus in mice may differ according to dosing time, sex, and feeding. Greater tissue distribution of everolimus at ZT1 may be associated with the worst tolerated time of everolimus. Our research suggests that oral chronomodulated everolimus therapy may be more effective and safer for cancer patients.

3.
Biochem Pharmacol ; 218: 115896, 2023 12.
Artículo en Inglés | MEDLINE | ID: mdl-37898388

RESUMEN

Cryptochromes (CRYs), transcriptional repressors of the circadian clock in mammals, inhibit cAMP production when glucagon activates G-protein coupled receptors. Therefore, molecules that modulate CRYs have the potential to regulate gluconeogenesis. In this study, we discovered a new molecule called TW68 that interacts with the primary pockets of mammalian CRY1/2, leading to reduced ubiquitination levels and increased stability. In cell-based circadian rhythm assays using U2OS Bmal1-dLuc cells, TW68 extended the period length of the circadian rhythm. Additionally, TW68 decreased the transcriptional levels of two genes, Phosphoenolpyruvate carboxykinase 1 (PCK1) and Glucose-6-phosphatase (G6PC), which play crucial roles in glucose biosynthesis during glucagon-induced gluconeogenesis in HepG2 cells. Oral administration of TW68 in mice showed good tolerance, a good pharmacokinetic profile, and remarkable bioavailability. Finally, when administered to fasting diabetic animals from ob/ob and HFD-fed obese mice, TW68 reduced blood glucose levels by enhancing CRY stabilization and subsequently decreasing the transcriptional levels of Pck1 and G6pc. These findings collectively demonstrate the antidiabetic efficacy of TW68 in vivo, suggesting its therapeutic potential for controlling fasting glucose levels in the treatment of type 2 diabetes mellitus.


Asunto(s)
Relojes Circadianos , Diabetes Mellitus Tipo 2 , Animales , Ratones , Criptocromos/genética , Glucemia , Ratones Obesos , Glucagón , Diabetes Mellitus Tipo 2/tratamiento farmacológico , Ritmo Circadiano/fisiología , Mamíferos , Ayuno
4.
Biology (Basel) ; 12(8)2023 Aug 02.
Artículo en Inglés | MEDLINE | ID: mdl-37626963

RESUMEN

Essential for survival and reproduction, the circadian timing system (CTS) regulates adaptation to cyclical changes such as the light/dark cycle, temperature change, and food availability. The regulation of energy homeostasis possesses rhythmic properties that correspond to constantly fluctuating needs for energy production and consumption. Adipose tissue is mainly responsible for energy storage and, thus, operates as one of the principal components of energy homeostasis regulation. In accordance with its roles in energy homeostasis, alterations in adipose tissue's physiological processes are associated with numerous pathologies, such as obesity and type 2 diabetes. These alterations also include changes in circadian rhythm. In the current review, we aim to summarize the current knowledge regarding the circadian rhythmicity of adipogenesis, lipolysis, adipokine secretion, browning, and non-shivering thermogenesis in adipose tissue and to evaluate possible links between those alterations and metabolic diseases. Based on this evaluation, potential therapeutic approaches, as well as clock genes as potential therapeutic targets, are also discussed in the context of chronotherapy.

5.
J Biol Rhythms ; 38(2): 171-184, 2023 04.
Artículo en Inglés | MEDLINE | ID: mdl-36762608

RESUMEN

The circadian timing system controls absorption, distribution, metabolism, and elimination processes of drug pharmacokinetics over a 24-h period. Exposure of target tissues to the active form of the drug and cytotoxicity display variations depending on the chronopharmacokinetics. For anticancer drugs with narrow therapeutic ranges and dose-limiting side effects, it is particularly important to know the temporal changes in pharmacokinetics. A previous study indicated that pharmacokinetic profile of capecitabine was different depending on dosing time in rat. However, it is not known how such difference is attributed with respect to diurnal rhythm. Therefore, in this study, we evaluated capecitabine-metabolizing enzymes in a diurnal rhythm-dependent manner. To this end, C57BL/6J male mice were orally treated with 500 mg/kg capecitabine at ZT1, ZT7, ZT13, or ZT19. We then determined pharmacokinetics of capecitabine and its metabolites, 5'-deoxy-5-fluorocytidine (5'DFCR), 5'-deoxy-5-fluorouridine (5'DFUR), 5-fluorouracil (5-FU), in plasma and liver. Results revealed that plasma Cmax and AUC0-6h (area under the plasma concentration-time curve from 0 to 6 h) values of capecitabine, 5'DFUR, and 5-FU were higher during the rest phase (ZT1 and ZT7) than the activity phase (ZT13 and ZT19) (p < 0.05). Similarly, Cmax and AUC0-6h values of 5'DFUR and 5-FU in liver were higher during the rest phase than activity phase (p < 0.05), while there was no significant difference in liver concentrations of capecitabine and 5'DFCR. We determined the level of the enzymes responsible for the conversion of capecitabine and its metabolites at each ZT. Results indicated the levels of carboxylesterase 1 and 2, cytidine deaminase, uridine phosphorylase 2, and dihydropyrimidine dehydrogenase (p < 0.05) are being rhythmically regulated and, in turn, attributed different pharmacokinetics profiles of capecitabine and its metabolism. This study highlights the importance of capecitabine administration time to increase the efficacy with minimum adverse effects.


Asunto(s)
Antimetabolitos Antineoplásicos , Ritmo Circadiano , Masculino , Ratones , Ratas , Animales , Capecitabina/farmacocinética , Antimetabolitos Antineoplásicos/farmacocinética , Antimetabolitos Antineoplásicos/uso terapéutico , Ratones Endogámicos C57BL , Fluorouracilo/metabolismo , Fluorouracilo/uso terapéutico
6.
Nat Commun ; 13(1): 6742, 2022 11 08.
Artículo en Inglés | MEDLINE | ID: mdl-36347873

RESUMEN

Cryptochromes are negative transcriptional regulators of the circadian clock in mammals. It is not clear how reducing the level of endogenous CRY1 in mammals will affect circadian rhythm and the relation of such a decrease with apoptosis. Here, we discovered a molecule (M47) that destabilizes Cryptochrome 1 (CRY1) both in vitro and in vivo. The M47 selectively enhanced the degradation rate of CRY1 by increasing its ubiquitination and resulted in increasing the circadian period length of U2OS Bmal1-dLuc cells. In addition, subcellular fractionation studies from mice liver indicated that M47 increased degradation of the CRY1 in the nucleus. Furthermore, M47-mediated CRY1 reduction enhanced oxaliplatin-induced apoptosis in Ras-transformed p53 null fibroblast cells. Systemic repetitive administration of M47 increased the median lifespan of p53-/- mice by ~25%. Collectively our data suggest that M47 is a promising molecule to treat forms of cancer depending on the p53 mutation.


Asunto(s)
Relojes Circadianos , Criptocromos , Animales , Ratones , Relojes Circadianos/genética , Ritmo Circadiano/genética , Criptocromos/genética , Criptocromos/metabolismo , Longevidad , Mamíferos/metabolismo , Ratones Noqueados , Factores de Transcripción/metabolismo , Proteína p53 Supresora de Tumor/genética
7.
J Biol Chem ; 295(11): 3518-3531, 2020 03 13.
Artículo en Inglés | MEDLINE | ID: mdl-32019867

RESUMEN

Proper function of many physiological processes requires a robust circadian clock. Disruptions of the circadian clock can result in metabolic diseases, mood disorders, and accelerated aging. Therefore, identifying small molecules that specifically modulate regulatory core clock proteins may potentially enable better management of these disorders. In this study, we applied a structure-based molecular-docking approach to find small molecules that specifically bind to the core circadian regulator, the transcription factor circadian locomotor output cycles kaput (CLOCK). We identified 100 candidate molecules by virtual screening of ∼2 million small molecules for those predicted to bind closely to the interface in CLOCK that interacts with its transcriptional co-regulator, Brain and muscle Arnt-like protein-1 (BMAL1). Using a mammalian two-hybrid system, real-time monitoring of circadian rhythm in U2OS cells, and various biochemical assays, we tested these compounds experimentally and found one, named CLK8, that specifically bound to and interfered with CLOCK activity. We show that CLK8 disrupts the interaction between CLOCK and BMAL1 and interferes with nuclear translocation of CLOCK both in vivo and in vitro Results from further experiments indicated that CLK8 enhances the amplitude of the cellular circadian rhythm by stabilizing the negative arm of the transcription/translation feedback loop without affecting period length. Our results reveal CLK8 as a tool for further studies of CLOCK's role in circadian rhythm amplitude regulation and as a potential candidate for therapeutic development to manage disorders associated with dampened circadian rhythms.


Asunto(s)
Factores de Transcripción ARNTL/metabolismo , Proteínas CLOCK/metabolismo , Ritmo Circadiano/efectos de los fármacos , Bibliotecas de Moléculas Pequeñas/farmacología , Animales , Sitios de Unión , Línea Celular Tumoral , Núcleo Celular/efectos de los fármacos , Núcleo Celular/metabolismo , Supervivencia Celular/efectos de los fármacos , Células HEK293 , Humanos , Hígado/efectos de los fármacos , Hígado/metabolismo , Masculino , Ratones Endogámicos C57BL , Modelos Biológicos , Simulación del Acoplamiento Molecular , Simulación de Dinámica Molecular , Unión Proteica/efectos de los fármacos , Transporte de Proteínas/efectos de los fármacos , Fracciones Subcelulares/metabolismo , Factores de Tiempo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...