Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
Nat Cell Biol ; 22(7): 791-802, 2020 07.
Artículo en Inglés | MEDLINE | ID: mdl-32483386

RESUMEN

Tissue remodelling during Drosophila embryogenesis is notably driven by epithelial cell contractility. This behaviour arises from the Rho1-Rok-induced pulsatile accumulation of non-muscle myosin II pulling on actin filaments of the medioapical cortex. While recent studies have highlighted the mechanisms governing the emergence of Rho1-Rok-myosin II pulsatility, little is known about how F-actin organization influences this process. Here, we show that the medioapical cortex consists of two entangled F-actin subpopulations. One exhibits pulsatile dynamics of actin polymerization in a Rho1-dependent manner. The other forms a persistent and homogeneous network independent of Rho1. We identify the formin Frl (also known as Fmnl) as a critical nucleator of the persistent network, since modulating its level in mutants or by overexpression decreases or increases the network density. Absence of this network yields sparse connectivity affecting the homogeneous force transmission to the cell boundaries. This reduces the propagation range of contractile forces and results in tissue-scale morphogenetic defects.


Asunto(s)
Citoesqueleto de Actina/fisiología , Drosophila melanogaster/metabolismo , Células Epiteliales/patología , Forminas/fisiología , Miosina Tipo II/metabolismo , Proteínas de Unión al GTP rho/metabolismo , Quinasas Asociadas a rho/metabolismo , Animales , Polaridad Celular , Drosophila melanogaster/genética , Células Epiteliales/metabolismo , Femenino , Masculino , Ratones , Ratones Noqueados , Morfogénesis , Miosina Tipo II/genética , Proteínas de Unión al GTP rho/genética , Quinasas Asociadas a rho/genética
2.
Development ; 147(7)2020 04 08.
Artículo en Inglés | MEDLINE | ID: mdl-32156755

RESUMEN

How extracellular matrix contributes to tissue morphogenesis is still an open question. In the Drosophila ovarian follicle, it has been proposed that after Fat2-dependent planar polarization of the follicle cell basal domain, oriented basement membrane (BM) fibrils and F-actin stress fibers constrain follicle growth, promoting its axial elongation. However, the relationship between BM fibrils and stress fibers and their respective impact on elongation are unclear. We found that Dystroglycan (Dg) and Dystrophin (Dys) are involved in BM fibril deposition. Moreover, they also orient stress fibers, by acting locally and in parallel to Fat2. Importantly, Dg-Dys complex-mediated cell-autonomous control of F-actin fiber orientation relies on the preceding BM fibril deposition, indicating two distinct but interdependent functions. Thus, the Dg-Dys complex works as a crucial organizer of the epithelial basal domain, regulating both F-actin and BM. Furthermore, BM fibrils act as a persistent cue for the orientation of stress fibers that are the main effector of elongation.


Asunto(s)
Actinas/metabolismo , Membrana Basal/fisiología , Polaridad Celular/fisiología , Citoesqueleto/metabolismo , Distroglicanos/metabolismo , Distrofina/metabolismo , Morfogénesis/fisiología , Citoesqueleto de Actina/metabolismo , Animales , Animales Modificados Genéticamente , Membrana Basal/citología , Membrana Basal/ultraestructura , Polaridad Celular/genética , Drosophila/embriología , Drosophila/genética , Distroglicanos/genética , Distrofina/genética , Femenino , Morfogénesis/genética , Complejos Multiproteicos/metabolismo , Unión Proteica
3.
Curr Biol ; 29(5): 856-864.e3, 2019 03 04.
Artículo en Inglés | MEDLINE | ID: mdl-30799243

RESUMEN

Formation of correctly shaped organs is vital for normal function. The Drosophila wing has an elongated shape, which has been attributed in part to a preferential orientation of mitotic spindles along the proximal-distal axis [1, 2]. Orientation of mitotic spindles is believed to be a fundamental morphogenetic mechanism in multicellular organisms [3-6]. A contribution of spindle orientation to wing shape was inferred from observations that mutation of Dachsous-Fat pathway genes results in both rounder wings and loss of the normal proximal-distal bias in spindle orientation [1, 2, 7]. To directly evaluate the potential contribution of spindle orientation to wing morphogenesis, we assessed the consequences of loss of the Drosophila NuMA homolog Mud, which interacts with the dynein complex and has a conserved role in spindle orientation [8, 9]. Loss of Mud randomizes spindle orientation but does not alter wing shape. Analysis of growth and cell dynamics in developing discs and in ex vivo culture suggests that the absence of oriented cell divisions is compensated for by an increased contribution of cell rearrangements to wing shape. Our results indicate that oriented cell divisions are not required for wing morphogenesis, nor are they required for the morphogenesis of other Drosophila appendages. Moreover, our results suggest that normal organ shape is not achieved through locally specifying and then summing up individual cell behaviors, like oriented cell division. Instead, wing shape might be specified through tissue-wide stresses that dictate an overall arrangement of cells without specifying the individual cell behaviors needed to achieve it.


Asunto(s)
División Celular/fisiología , Drosophila melanogaster/crecimiento & desarrollo , Alas de Animales/crecimiento & desarrollo , Animales , Proteínas de Ciclo Celular/metabolismo , Proteínas de Drosophila/metabolismo , Drosophila melanogaster/anatomía & histología
4.
J Cell Sci ; 132(5)2019 02 25.
Artículo en Inglés | MEDLINE | ID: mdl-30659113

RESUMEN

The Hippo signaling network controls organ growth through YAP family transcription factors, including the Drosophila Yorkie protein. YAP activity is responsive to both biochemical and biomechanical cues, with one key input being tension within the F-actin cytoskeleton. Several potential mechanisms for the biomechanical regulation of YAP proteins have been described, including tension-dependent recruitment of Ajuba family proteins, which inhibit kinases that inactivate YAP proteins, to adherens junctions. Here, we investigate the mechanism by which the Drosophila Ajuba family protein Jub is recruited to adherens junctions, and the contribution of this recruitment to the regulation of Yorkie. We identify α-catenin as the mechanotransducer responsible for tension-dependent recruitment of Jub by identifying a region of α-catenin that associates with Jub, and by identifying a region, which when deleted, allows constitutive, tension-independent recruitment of Jub. We also show that increased Jub recruitment to α-catenin is associated with increased Yorkie activity and wing growth, even in the absence of increased cytoskeletal tension. Our observations establish α-catenin as a multi-functional mechanotransducer and confirm Jub recruitment to α-catenin as a key contributor to biomechanical regulation of Hippo signaling.


Asunto(s)
Citoesqueleto de Actina/metabolismo , Uniones Adherentes/metabolismo , Proteínas de Drosophila/metabolismo , Drosophila/fisiología , Proteínas con Dominio LIM/metabolismo , Proteínas Nucleares/metabolismo , Transactivadores/metabolismo , Alas de Animales/fisiología , alfa Catenina/metabolismo , Actinas/metabolismo , Animales , Sitios de Unión/genética , Fenómenos Biomecánicos , Adhesión Celular , Proteínas de Drosophila/genética , Regulación del Desarrollo de la Expresión Génica/genética , Péptidos y Proteínas de Señalización Intracelular/metabolismo , Proteínas con Dominio LIM/genética , Mecanotransducción Celular , Proteínas Nucleares/genética , Unión Proteica , Proteínas Serina-Treonina Quinasas/metabolismo , Transducción de Señal , Transactivadores/genética , Proteínas Señalizadoras YAP
5.
Development ; 145(20)2018 10 17.
Artículo en Inglés | MEDLINE | ID: mdl-30254143

RESUMEN

Tissue growth needs to be properly controlled for organs to reach their correct size and shape, but the mechanisms that control growth during normal development are not fully understood. We report here that the activity of the Hippo signaling transcriptional activator Yorkie gradually decreases in the central region of the developing Drosophila wing disc. Spatial and temporal changes in Yorkie activity can be explained by changes in cytoskeletal tension and biomechanical regulators of Hippo signaling. These changes in cellular biomechanics correlate with changes in cell density, and experimental manipulations of cell density are sufficient to alter biomechanical Hippo signaling and Yorkie activity. We also relate the pattern of Yorkie activity in older discs to patterns of cell proliferation. Our results establish that spatial and temporal patterns of Hippo signaling occur during wing development, that these patterns depend upon cell-density modulated tissue mechanics and that they contribute to the regulation of wing cell proliferation.


Asunto(s)
Proteínas de Drosophila/metabolismo , Drosophila melanogaster/embriología , Drosophila melanogaster/metabolismo , Péptidos y Proteínas de Señalización Intracelular/metabolismo , Proteínas Serina-Treonina Quinasas/metabolismo , Transducción de Señal , Alas de Animales/embriología , Alas de Animales/metabolismo , Animales , Membrana Basal/citología , Membrana Basal/metabolismo , Fenómenos Biomecánicos , Recuento de Células , Proliferación Celular , Citoesqueleto/metabolismo , Drosophila melanogaster/citología , Discos Imaginales/citología , Discos Imaginales/embriología , Discos Imaginales/metabolismo , Factores de Tiempo , Alas de Animales/citología
6.
Elife ; 72018 02 08.
Artículo en Inglés | MEDLINE | ID: mdl-29420170

RESUMEN

Tissue elongation and its control by spatiotemporal signals is a major developmental question. Currently, it is thought that Drosophila ovarian follicular epithelium elongation requires the planar polarization of the basal domain cytoskeleton and of the extra-cellular matrix, associated with a dynamic process of rotation around the anteroposterior axis. Here we show, by careful kinetic analysis of fat2 mutants, that neither basal planar polarization nor rotation is required during a first phase of follicle elongation. Conversely, a JAK-STAT signaling gradient from each follicle pole orients early elongation. JAK-STAT controls apical pulsatile contractions, and Myosin II activity inhibition affects both pulses and early elongation. Early elongation is associated with apical constriction at the poles and with oriented cell rearrangements, but without any visible planar cell polarization of the apical domain. Thus, a morphogen gradient can trigger tissue elongation through a control of cell pulsing and without a planar cell polarity requirement.


Asunto(s)
Proteínas de Drosophila/metabolismo , Drosophila/fisiología , Quinasas Janus/metabolismo , Morfogénesis , Folículo Ovárico/crecimiento & desarrollo , Factores de Transcripción STAT/metabolismo , Transducción de Señal , Factores de Transcripción/metabolismo , Animales , Femenino
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...