Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
Cell Rep Med ; 5(5): 101547, 2024 May 21.
Artículo en Inglés | MEDLINE | ID: mdl-38703764

RESUMEN

Non-clear cell renal cell carcinomas (non-ccRCCs) encompass diverse malignant and benign tumors. Refinement of differential diagnosis biomarkers, markers for early prognosis of aggressive disease, and therapeutic targets to complement immunotherapy are current clinical needs. Multi-omics analyses of 48 non-ccRCCs compared with 103 ccRCCs reveal proteogenomic, phosphorylation, glycosylation, and metabolic aberrations in RCC subtypes. RCCs with high genome instability display overexpression of IGF2BP3 and PYCR1. Integration of single-cell and bulk transcriptome data predicts diverse cell-of-origin and clarifies RCC subtype-specific proteogenomic signatures. Expression of biomarkers MAPRE3, ADGRF5, and GPNMB differentiates renal oncocytoma from chromophobe RCC, and PIGR and SOSTDC1 distinguish papillary RCC from MTSCC. This study expands our knowledge of proteogenomic signatures, biomarkers, and potential therapeutic targets in non-ccRCC.


Asunto(s)
Biomarcadores de Tumor , Carcinoma de Células Renales , Neoplasias Renales , Proteogenómica , Humanos , Proteogenómica/métodos , Neoplasias Renales/genética , Neoplasias Renales/patología , Neoplasias Renales/metabolismo , Biomarcadores de Tumor/genética , Biomarcadores de Tumor/metabolismo , Carcinoma de Células Renales/genética , Carcinoma de Células Renales/patología , Carcinoma de Células Renales/metabolismo , Transcriptoma/genética , Masculino , Femenino , Persona de Mediana Edad , Regulación Neoplásica de la Expresión Génica
2.
bioRxiv ; 2023 Nov 02.
Artículo en Inglés | MEDLINE | ID: mdl-37961519

RESUMEN

Breast cancer is a heterogeneous disease, and treatment is guided by biomarker profiles representing distinct molecular subtypes. Breast cancer arises from the breast ductal epithelium, and experimental data suggests breast cancer subtypes have different cells of origin within that lineage. The precise cells of origin for each subtype and the transcriptional networks that characterize these tumor-normal lineages are not established. In this work, we applied bulk, single-cell (sc), and single-nucleus (sn) multi-omic techniques as well as spatial transcriptomics and multiplex imaging on 61 samples from 37 breast cancer patients to show characteristic links in gene expression and chromatin accessibility between breast cancer subtypes and their putative cells of origin. We applied the PAM50 subtyping algorithm in tandem with bulk RNA-seq and snRNA-seq to reliably subtype even low-purity tumor samples and confirm promoter accessibility using snATAC. Trajectory analysis of chromatin accessibility and differentially accessible motifs clearly connected progenitor populations with breast cancer subtypes supporting the cell of origin for basal-like and luminal A and B tumors. Regulatory network analysis of transcription factors underscored the importance of BHLHE40 in luminal breast cancer and luminal mature cells, and KLF5 in basal-like tumors and luminal progenitor cells. Furthermore, we identify key genes defining the basal-like ( PRKCA , SOX6 , RGS6 , KCNQ3 ) and luminal A/B ( FAM155A , LRP1B ) lineages, with expression in both precursor and cancer cells and further upregulation in tumors. Exhausted CTLA4-expressing CD8+ T cells were enriched in basal-like breast cancer, suggesting altered means of immune dysfunction among breast cancer subtypes. We used spatial transcriptomics and multiplex imaging to provide spatial detail for key markers of benign and malignant cell types and immune cell colocation. These findings demonstrate analysis of paired transcription and chromatin accessibility at the single cell level is a powerful tool for investigating breast cancer lineage development and highlight transcriptional networks that define basal and luminal breast cancer lineages.

3.
Int J Inflam ; 2021: 4666380, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34868543

RESUMEN

Inflammation is associated with the development of several cancers, including breast cancer. However, the molecular mechanisms driving breast cancer initiation or enhancement by inflammation are yet to be deciphered. Hence, we opted to investigate the role of inflammation in initiating and enhancing tumor-like phenotypes in nontumorigenic, pretumorigenic, and tumorigenic breast epithelial cells. Noncytotoxic endotoxin (ET) concentrations capable of inducing an inflammatory phenotype were determined for the different cell lines. Results showed that short-term ET exposure upregulated matrix metalloproteinase-9 (MMP-9) activity in nontumorigenic mammary epithelial cells of mouse (SCp2) and human origins (HMT-3522 S1; S1) and upregulated inflammatory mediators including nitric oxide (NO) and interleukin 1-ß in tumorigenic human breast cells (MDA-MB-231), all in a dose-dependent manner. Long-term ET treatment, but not short-term, triggered the migration of SCp2 cells, and proliferation and migration of tumorigenic human breast cells MCF-7 and MDA-MB-231. Both short- and long-term ET exposures preferentially enhanced the invasion of pretumorigenic S1-connexin 43 knockout (Cx43-KO S1) cells compared to their nontumorigenic S1 counterparts. Moreover, both ET exposures disrupted lumen formation and apicolateral distribution of ß-catenin in 3D cultures of S1 cells. In conclusion, ET treatment at concentrations that elicited inflammatory phenotype triggered tumor initiation events in nontumorigenic and pretumorigenic breast cells, and increased tumorigenicity of breast cancer cells. Our findings highlight the role of inflammation in enhancing migration, invasion, and loss of normal 3D morphology and suggest that such inflammatory insults can "add injury" to pretumorigenic and tumorigenic breast epithelial cells.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...