Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros













Base de datos
Intervalo de año de publicación
1.
Biomater Adv ; 139: 213041, 2022 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-35909053

RESUMEN

Tissue engineering with human cardiac fibroblasts (CF) allows identifying novel mechanisms and anti-fibrotic drugs in the context of cardiac fibrosis. However, substantial knowledge on the influences of the used materials and tissue geometries on tissue properties and cell phenotypes is necessary to be able to choose an appropriate model for a specific research question. As there is a clear lack of information on how CF react to the mold architecture in engineered connective tissues (ECT), we first compared the effect of two mold geometries and materials with different hardnesses on the biomechanical properties of ECT. We could show that ECT, which formed around two distant poles (non-uniform model) were less stiff and more strain-resistant than ECT, which formed around a central rod (uniform model), independent of the materials used for poles and rods. Next, we investigated the cell state and could demonstrate that in the uniform versus non-uniform model, the embedded cells have a higher cell cycle activity and display a more pronounced myofibroblast phenotype. Differential gene expression analysis revealed that uniform ECT displayed a fibrosis-associated gene signature similar to the diseased heart. Furthermore, we were able to identify important relationships between cell and tissue characteristics, as well as between biomechanical tissue parameters by implementing cells from normal heart and end-stage heart failure explants from patients with ischemic or dilated cardiomyopathy. Finally, we show that the application of pro- and anti-fibrotic factors in the non-uniform and uniform model, respectively, is not sufficient to mimic the effect of the other geometry. Taken together, we demonstrate that modifying the mold geometry in tissue engineering with CF offers the possibility to compare different cellular phenotypes and biomechanical tissue properties.


Asunto(s)
Fibroblastos , Miofibroblastos , Tejido Conectivo , Fibrosis , Corazón , Humanos , Fenotipo
2.
Front Pharmacol ; 7: 50, 2016.
Artículo en Inglés | MEDLINE | ID: mdl-27014064

RESUMEN

Traditional medicine has a history extending back to thousands of years, and during the intervening time, man has identified the healing properties of a very broad range of plants. Globally, the use of herbal therapies to treat and manage cardiovascular disease (CVD) is on the rise. This is the second part of our comprehensive review where we discuss the mechanisms of plants and herbs used for the treatment and management of high blood pressure. Similar to the first part, PubMed and ScienceDirect databases were utilized, and the following keywords and phrases were used as inclusion criteria: hypertension, high blood pressure, herbal medicine, complementary and alternative medicine, endothelial cells, nitric oxide (NO), vascular smooth muscle cell (VSMC) proliferation, hydrogen sulfide, nuclear factor kappa-B (NF-κB), oxidative stress, and epigenetics/epigenomics. Each of the aforementioned keywords was co-joined with plant or herb in question, and where possible with its constituent molecule(s). This part deals in particular with plants that are used, albeit less frequently, for the treatment and management of hypertension. We then discuss the interplay between herbs/prescription drugs and herbs/epigenetics in the context of this disease. The review then concludes with a recommendation for more rigorous, well-developed clinical trials to concretely determine the beneficial impact of herbs and plants on hypertension and a disease-free living.

3.
Front Pharmacol ; 6: 323, 2015.
Artículo en Inglés | MEDLINE | ID: mdl-26834637

RESUMEN

The use of herbal therapies for treatment and management of cardiovascular diseases (CVDs) is increasing. Plants contain a bounty of phytochemicals that have proven to be protective by reducing the risk of various ailments and diseases. Indeed, accumulating literature provides the scientific evidence and hence reason d'etre for the application of herbal therapy in relation to CVDs. Slowly, but absolutely, herbal remedies are being entrenched into evidence-based medical practice. This is partly due to the supporting clinical trials and epidemiological studies. The rationale for this expanding interest and use of plant based treatments being that a significant proportion of hypertensive patients do not respond to Modern therapeutic medication. Other elements to this equation are the cost of medication, side-effects, accessibility, and availability of drugs. Therefore, we believe it is pertinent to review the literature on the beneficial effects of herbs and their isolated compounds as medication for treatment of hypertension, a prevalent risk factor for CVDs. Our search utilized the PubMed and ScienceDirect databases, and the criterion for inclusion was based on the following keywords and phrases: hypertension, high blood pressure, herbal medicine, complementary and alternative medicine (CAM), nitric oxide, vascular smooth muscle cell (VSMC) proliferation, hydrogen sulfide, nuclear factor kappa-B, oxidative stress, and epigenetics/epigenomics. Each of the aforementioned keywords was co-joined with herb in question, and where possible with its constituent molecule(s). In this first of a two-part review, we provide a brief introduction of hypertension, followed by a discussion of the molecular and cellular mechanisms. We then present and discuss the plants that are most commonly used in the treatment and management of hypertension.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA