Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 1 de 1
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
Comput Biol Med ; 180: 108934, 2024 Jul 29.
Artículo en Inglés | MEDLINE | ID: mdl-39079417

RESUMEN

BACKGROUND: Understanding the pathophysiological dynamics that underline Interictal Epileptiform Events (IEEs) such as epileptic spikes, spike-and-waves or High-Frequency Oscillations (HFOs) is of major importance in the context of neocortical refractory epilepsy, as it paves the way for the development of novel therapies. Typically, these events are detected in Local Field Potential (LFP) recordings obtained through depth electrodes during pre-surgical investigations. Although essential, the underlying pathophysiological mechanisms for the generation of these epileptic neuromarkers remain unclear. The aim of this paper is to propose a novel neurophysiologically relevant reconstruction of the neocortical microcircuitry in the context of epilepsy. This reconstruction intends to facilitate the analysis of a comprehensive set of parameters encompassing physiological, morphological, and biophysical aspects that directly impact the generation and recording of different IEEs. METHOD: a novel microscale computational model of an epileptic neocortical column was introduced. This model incorporates the intricate multilayered structure of the cortex and allows for the simulation of realistic interictal epileptic signals. The proposed model was validated through comparisons with real IEEs recorded using intracranial stereo-electroencephalography (SEEG) signals from both humans and animals. Using the model, the user can recreate epileptiform patterns observed in different species (human, rodent, and mouse) and study the intracellular activity associated with these patterns. RESULTS: Our model allowed us to unravel the relationship between glutamatergic and GABAergic synaptic transmission of the epileptic neural network and the type of generated IEE. Moreover, sensitivity analyses allowed for the exploration of the pathophysiological parameters responsible for the transitions between these events. Finally, the presented modeling framework also provides an Electrode Tissue Model (ETI) that adds realism to the simulated signals and offers the possibility of studying their sensitivity to the electrode characteristics. CONCLUSION: The model (NeoCoMM) presented in this work can be of great use in different applications since it offers an in silico framework for sensitivity analysis and hypothesis testing. It can also be used as a starting point for more complex studies.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...