Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 16 de 16
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
Life (Basel) ; 13(12)2023 Nov 28.
Artículo en Inglés | MEDLINE | ID: mdl-38137875

RESUMEN

The potential of circulating tumor DNA (ctDNA) as a biomarker to assess the progression of various solid tumors has been explored extensively. In this study, we investigated the feasibility of utilizing a ctDNA sequencing panel specifically designed to target the most frequently mutated genomic regions in colon and pancreas cancers. Through somatic analysis of colon and pancreas tumors, we targeted 27 regions within eight genes. By employing PCR amplification and Illumina NGS, we ensured that each region was adequately covered with a minimum of 5000 reads (with an average of 12,000 reads). Our method exhibited reproducibility with repetition and dilutions. The positive detection threshold for ctDNA was set at a cutoff value of 0.5% ctDNA of the total reads using IGV. Among the samples analyzed, 71% of colon cancer cases displayed somatic mutations covered by the targeted regions. Within this group, detectable ctDNA was observed in 34% of the cases. Conversely, in pancreatic cancer, 55% of mutations were covered by the panel's regions, but only 13% of these cases exhibited detectable ctDNA. In follow-ups with the patients, changes in ctDNA percentages demonstrated complete concordance with changes in the clinical condition in 88% of the cases. Our findings suggest that employing a basic ctDNA-targeted panel can serve as a cost-effective and reliable approach for repeated monitoring of the efficacy of colon cancer therapy. However, in the case of pancreatic cancer, ctDNA showed limited utility, and alternative biomarkers may offer superior diagnostic value. Additionally, we found that a negative ctDNA test is not a guarantee for a relapse-free recovery; thus, we recommend a continuous follow-up with the patient on a long-term basis.

2.
Hum Genet ; 142(10): 1491-1498, 2023 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-37656279

RESUMEN

DBR1 encodes the only known human lariat debranching enzyme and its deficiency has been found to cause an autosomal recessive inborn error of immunity characterized by pediatric brainstem viral-induced encephalitis (MIM 619441). We describe a distinct allelic disorder caused by a founder recessive DBR1 variant in four families (DBR1(NM_016216.4):c.200A > G (p.Tyr67Cys)). Consistent features include prematurity, severe intrauterine growth deficiency, congenital ichthyosis-like presentation (collodion membrane, severe skin peeling and xerosis), and death before the first year of life. Patient-derived fibroblasts displayed the characteristic accumulation of intron lariats in their RNA as revealed by targeted and untargeted analysis, in addition to a marked reduction of DBR1 on immunoblot analysis. We propose a novel DBR1-related developmental disorder that is distinct from DBR1-related encephalitis susceptibility and highlight the apparent lack of correlation with the degree of DBR1 deficiency.


Asunto(s)
Encefalitis , Ictiosis , Niño , Humanos , Alelos , Causalidad , Fibroblastos , Ictiosis/genética
3.
Lab Invest ; 103(7): 100132, 2023 07.
Artículo en Inglés | MEDLINE | ID: mdl-36966951

RESUMEN

To test the traditional model of tumor progression, Darwinian-type evolution, against the more recent Big Bang model, we selected 6 microsatellite-stable colorectal standard-type adenocarcinomas and their synchronous lymph node and liver metastases. Somatic genomic variants were identified by whole-exome sequencing (WES) of large tumor fragments from the primaries and 1 liver metastasis each, and used to design targeted resequencing next-generation sequencing (NGS) panels, 1 per case. Targeted deep resequencing (mean coverage, 2725; median, 2222) was performed with DNA from punch samples (1-mm tissue microarrayer needles) obtained from different regions of the primaries and their metastases. In total, 255 genomic variants were interrogated in 108 punch samples. Clonal heterogeneity was infrequent: a pattern of clonal heterogeneity consistent with a role in metastasis formation was observed only in 1 case in a single gene (p. Asp604Tyr of the PTPRT gene). However, when comparing variant allele frequencies (VAFs) of genomic variants in adjacent positions on chromosomes ("matched genomic variant loci") across punch samples, differences that exceeded 2 SD of the NGS assay variations (ad hoc dubbed VAF dysbalance) were observed in 7.1% of the punch samples (2.6%-12.0% per case), which indicates an intricate intermixing of mutated and nonmutated tumor cells ("intrinsic heterogeneity"). Additional OncoScan array analyses on a subset of the punch samples (31 in total) showed gross genomic aberrations as a possible explanation in only some (39.2%) of the matched genomic variant loci with VAF dysbalance. Our study provides a fairly direct (statistical model-free) view of the genomic states of microsatellite-stable colorectal carcinomas and their metastases, and suggests that Darwinian-type tumor evolution is not the key pathway of the metastasizing disease; instead, we recorded an "intrinsic" genomic heterogeneity, which may echo an initial Big Bang-like event.


Asunto(s)
Neoplasias Colorrectales , Neoplasias Hepáticas , Humanos , Neoplasias Colorrectales/genética , Neoplasias Colorrectales/patología , Neoplasias Hepáticas/genética , Neoplasias Hepáticas/secundario , Repeticiones de Microsatélite/genética , Mutación
4.
Neuro Oncol ; 25(6): 1031-1043, 2023 06 02.
Artículo en Inglés | MEDLINE | ID: mdl-36215168

RESUMEN

BACKGROUND: IDH mutant gliomas are grouped into astrocytomas or oligodendrogliomas depending on the codeletion of chromosome arms 1p and 19q. Although the genomic alterations of IDH mutant gliomas have been well described, transcriptional changes unique to either tumor type have not been fully understood. Here, we identify Tripartite Motif Containing 67 (TRIM67), an E3 ubiquitin ligase with essential roles during neuronal development, as an oncogene distinctly upregulated in oligodendrogliomas. METHODS: We used several cell lines, including patient-derived oligodendroglioma tumorspheres, to knock down or overexpress TRIM67. We coupled high-throughput assays, including RNA sequencing, total lysate-mass spectrometry (MS), and coimmunoprecipitation (co-IP)-MS with functional assays including immunofluorescence (IF) staining, co-IP, and western blotting (WB) to assess the in vitro phenotype associated with TRIM67. Patient-derived oligodendroglioma tumorspheres were orthotopically implanted in mice to determine the effect of TRIM67 on tumor growth and survival. RESULTS: TRIM67 overexpression alters the abundance of cytoskeletal proteins and induces membrane bleb formation. TRIM67-associated blebbing was reverted with the nonmuscle class II myosin inhibitor blebbistatin and selective ROCK inhibitor fasudil. NOGO-A/Rho GTPase/ROCK2 signaling is altered upon TRIM67 ectopic expression, pointing to the underlying mechanism for TRIM67-induced blebbing. Phenotypically, TRIM67 expression resulted in higher cell motility and reduced cell adherence. In orthotopic implantation models of patient-derived oligodendrogliomas, TRIM67 accelerated tumor growth, reduced overall survival, and led to increased vimentin expression at the tumor margin. CONCLUSIONS: Taken together, our results demonstrate that upregulated TRIM67 induces blebbing-based rounded cell morphology through Rho GTPase/ROCK-mediated signaling thereby contributing to glioma pathogenesis.


Asunto(s)
Astrocitoma , Neoplasias Encefálicas , Glioma , Oligodendroglioma , Animales , Ratones , Humanos , Oligodendroglioma/genética , Proteínas Nogo/genética , Glioma/patología , Astrocitoma/genética , Transformación Celular Neoplásica , Carcinogénesis , Cromosomas Humanos Par 1 , Neoplasias Encefálicas/patología , Cromosomas Humanos Par 19 , Isocitrato Deshidrogenasa/genética , Mutación , Proteínas de Motivos Tripartitos/genética , Proteínas del Citoesqueleto/genética
5.
J Clin Invest ; 132(20)2022 10 17.
Artículo en Inglés | MEDLINE | ID: mdl-36006710

RESUMEN

CBL-B is an E3 ubiquitin ligase that ubiquitinates proteins downstream of immune receptors to downregulate positive signaling cascades. Distinct homozygous mutations in CBLB were identified in 3 unrelated children with early-onset autoimmunity, one of whom also had chronic urticaria. Patient T cells exhibited hyperproliferation in response to anti-CD3 cross-linking. One of the mutations, p.R496X, abolished CBL-B expression, and a second mutation, p.C464W, resulted in preserved CBL-B expression. The third mutation, p.H285L in the SH2 domain of CBL-B, was expressed at half the normal level in the patient's cells. Mice homozygous for the CBL-B p.H257L mutation, which corresponds to the patient's p.H285L mutation, had T and B cell hyperproliferation in response to antigen receptor cross-linking. CblbH257L mice had increased percentages of T regulatory cells (Tregs) that had normal in vitro suppressive function. However, T effector cells from the patient with the p.H285L mutation and CblbH257L mice were resistant to suppression by WT Tregs. Bone marrow-derived mast cells from CblbH257L mice were hyperactivated after FcεRI cross-linking, and CblbH257L mice demonstrated exaggerated IgE-mediated passive anaphylaxis. This study establishes CBL-B deficiency as a cause of immune dysregulation.


Asunto(s)
Receptores de IgE , Ubiquitina-Proteína Ligasas , Animales , Ratones , Inmunoglobulina E/genética , Mutación , Ubiquitina-Proteína Ligasas/genética , Humanos , Niño
6.
Int J Mol Sci ; 23(8)2022 Apr 13.
Artículo en Inglés | MEDLINE | ID: mdl-35457111

RESUMEN

The aberrant activation of the phosphoinositide 3-kinase (PI3K)/ protein kinase B (AKT) pathway is common in pancreatic ductal adenocarcinomas (PDAC). The application of inhibitors against PI3K and AKT has been considered as a therapeutic option. We investigated PDAC cell lines exposed to increasing concentrations of MK-2206 (an AKT1/2/3 inhibitor) and Buparlisib (a pan-PI3K inhibitor). Cell proliferation, metabolic activity, biomass, and apoptosis/necrosis were evaluated. Further, whole-exome sequencing (WES) and RNA sequencing (RNA-seq) were performed to analyze the recurrent aberrations and expression profiles of the inhibitor target genes and the genes frequently mutated in PDAC (Kirsten rat sarcoma virus (KRAS), Tumor protein p53 (TP53)). MK-2206 and Buparlisib demonstrated pronounced cytotoxic effects and limited cell-line-specific effects in cell death induction. WES revealed two sequence variants within the direct target genes (PIK3CA c.1143C > G in Colo357 and PIK3CD c.2480C > G in Capan-1), but a direct link to the Buparlisib response was not observed. RNA-seq demonstrated that the expression level of the inhibitor target genes did not affect the efficacy of the corresponding inhibitors. Moreover, increased resistance to MK-2206 was observed in the analyzed cell lines carrying a KRAS variant. Further, increased resistance to both inhibitors was observed in SU.86.86 carrying two TP53 missense variants. Additionally, the presence of the PIK3CA c.1143C > G in KRAS-variant-carrying cell lines was observed to correlate with increased sensitivity to Buparlisib. In conclusion, the present study reveals the distinct antitumor effects of PI3K/AKT pathway inhibitors against PDAC cell lines. Aberrations in specific target genes, as well as KRAS and TP53, individually or together, affect the efficacy of the two PI3K/AKT pathway inhibitors.


Asunto(s)
Carcinoma Ductal Pancreático , Neoplasias Pancreáticas , Aminopiridinas , Carcinoma Ductal Pancreático/tratamiento farmacológico , Carcinoma Ductal Pancreático/genética , Carcinoma Ductal Pancreático/metabolismo , Línea Celular Tumoral , Proliferación Celular , Fosfatidilinositol 3-Quinasa Clase I/metabolismo , Compuestos Heterocíclicos con 3 Anillos , Humanos , Morfolinas , Neoplasias Pancreáticas/tratamiento farmacológico , Neoplasias Pancreáticas/genética , Neoplasias Pancreáticas/metabolismo , Fosfatidilinositol 3-Quinasa/metabolismo , Fosfatidilinositol 3-Quinasas/genética , Fosfatidilinositol 3-Quinasas/metabolismo , Inhibidores de las Quinasa Fosfoinosítidos-3 , Proteínas Proto-Oncogénicas c-akt/metabolismo , Proteínas Proto-Oncogénicas p21(ras)/metabolismo , Transducción de Señal , Neoplasias Pancreáticas
7.
Int J Mol Sci ; 23(8)2022 Apr 16.
Artículo en Inglés | MEDLINE | ID: mdl-35457227

RESUMEN

Casein kinase II (CK2) and cyclin-dependent kinases (CDKs) frequently interact within multiple pathways in pancreatic ductal adenocarcinoma (PDAC). Application of CK2- and CDK-inhibitors have been considered as a therapeutic option, but are currently not part of routine chemotherapy regimens. We investigated ten PDAC cell lines exposed to increasing concentrations of silmitasertib and dinaciclib. Cell proliferation, metabolic activity, biomass, and apoptosis/necrosis were evaluated, and bioinformatic clustering was used to classify cell lines into sensitive groups based on their response to inhibitors. Furthermore, whole exome sequencing (WES) and RNA sequencing (RNA-Seq) was conducted to assess recurrent mutations and the expression profile of inhibitor targets and genes frequently mutated in PDAC, respectively. Dinaciclib and silmitasertib demonstrated pronounced and limited cell line specific effects in cell death induction, respectively. WES revealed no genomic variants causing changes in the primary structure of the corresponding inhibitor target proteins. RNA-Seq demonstrated that the expression of all inhibitor target genes was higher in the PDAC cell lines compared to non-neoplastic pancreatic tissue. The observed differences in PDAC cell line sensitivity to silmitasertib or dinaciclib did not depend on target gene expression or the identified gene variants. For the PDAC hotspot genes kirsten rat sarcoma virus (KRAS) and tumor protein p53 (TP53), three and eight variants were identified, respectively. In conclusion, both inhibitors demonstrated in vitro efficacy on the PDAC cell lines. However, aberrations and expression of inhibitor target genes did not appear to affect the efficacy of the corresponding inhibitors. In addition, specific aberrations in TP53 and KRAS affected the efficacy of both inhibitors.


Asunto(s)
Carcinoma Ductal Pancreático , Neoplasias Pancreáticas , Carcinoma Ductal Pancreático/tratamiento farmacológico , Carcinoma Ductal Pancreático/genética , Carcinoma Ductal Pancreático/metabolismo , Quinasa de la Caseína II/metabolismo , Línea Celular , Línea Celular Tumoral , Proliferación Celular/genética , Óxidos N-Cíclicos , Humanos , Indolizinas , Naftiridinas , Neoplasias Pancreáticas/tratamiento farmacológico , Neoplasias Pancreáticas/genética , Neoplasias Pancreáticas/metabolismo , Fenazinas , Inhibidores de Proteínas Quinasas/farmacología , Inhibidores de Proteínas Quinasas/uso terapéutico , Proteínas Proto-Oncogénicas p21(ras)/metabolismo , Compuestos de Piridinio , Neoplasias Pancreáticas
8.
Clin Genet ; 101(5-6): 565-570, 2022 05.
Artículo en Inglés | MEDLINE | ID: mdl-35229282

RESUMEN

We report four children from three related families who presented with a similar phenotype characterized by developmental delay, hypotonia, seizures, failure-to-thrive, strabismus, drooling, recurrent otitis media, hearing impairment, and genitourinary malformations. They also shared common facial features including arched eyebrows, prominent eyes, broad nasal bridge, low-hanging columella, open mouth, thick lower lip, protruding tongue, large low-set ears, and parietal bossing. Exome sequencing for affected individuals revealed a homozygous frame-shift variant, c.1833del; p.(Thr612Glnfs*22), in PROSER1 which encodes the proline and serine rich protein 1 (PROSER1). PROSER1 has recently been found to be part of the histone methyltransferases KMT2C/KMT2D complexes. PROSER1 stabilizes TET2, a member of the TET family of DNA demethylases which is involved in recruiting the enhancer-associated KMT2C/KMT2D complexes and mediating DNA demethylation, activating gene expression. Therefore, PROSER1 may play vital and potentially general roles in gene regulation, consistent with the wide phenotypic spectrum observed in the individuals presented here. The consistent phenotype, the loss-of-function predicted from the frame-shift, the co-segregation of the phenotype in our large pedigree, the vital role of PROSER1 in gene regulation, and the association of related genes with neurodevelopmental disorders argue for the loss of PROSER1 to be the cause for a novel recognizable syndrome.


Asunto(s)
Discapacidad Intelectual , Anomalías Urogenitales , Niño , Discapacidades del Desarrollo/genética , Femenino , Homocigoto , Humanos , Discapacidad Intelectual/genética , Masculino , Hipotonía Muscular/genética , Linaje , Fenotipo , Secuenciación del Exoma
9.
Biol Psychiatry ; 92(4): 323-334, 2022 08 15.
Artículo en Inglés | MEDLINE | ID: mdl-35227461

RESUMEN

BACKGROUND: The discovery of coding variants in genes that confer risk of intellectual disability (ID) is an important step toward understanding the pathophysiology of this common developmental disability. METHODS: Homozygosity mapping, whole-exome sequencing, and cosegregation analyses were used to identify gene variants responsible for syndromic ID with autistic features in two independent consanguineous families from the Arabian Peninsula. For in vivo functional studies of the implicated gene's function in cognition, Drosophila melanogaster and mice with targeted interference of the orthologous gene were used. Behavioral, electrophysiological, and structural magnetic resonance imaging analyses were conducted for phenotypic testing. RESULTS: Homozygous premature termination codons in PDZD8, encoding an endoplasmic reticulum-anchored lipid transfer protein, showed cosegregation with syndromic ID in both families. Drosophila melanogaster with knockdown of the PDZD8 ortholog exhibited impaired long-term courtship-based memory. Mice homozygous for a premature termination codon in Pdzd8 exhibited brain structural, hippocampal spatial memory, and synaptic plasticity deficits. CONCLUSIONS: These data demonstrate the involvement of homozygous loss-of-function mutations in PDZD8 in a neurodevelopmental cognitive disorder. Model organisms with manipulation of the orthologous gene replicate aspects of the human phenotype and suggest plausible pathophysiological mechanisms centered on disrupted brain development and synaptic function. These findings are thus consistent with accruing evidence that synaptic defects are a common denominator of ID and other neurodevelopmental conditions.


Asunto(s)
Disfunción Cognitiva , Discapacidad Intelectual , Proteínas Adaptadoras Transductoras de Señales/genética , Animales , Disfunción Cognitiva/genética , Consanguinidad , Drosophila , Drosophila melanogaster , Humanos , Discapacidad Intelectual/genética , Ratones , Mutación/genética
10.
J Med Genet ; 59(10): 993-1001, 2022 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-34952832

RESUMEN

PURPOSE: We sought to describe a disorder clinically mimicking cystic fibrosis (CF) and to elucidate its genetic cause. METHODS: Exome/genome sequencing and human phenotype ontology data of nearly 40 000 patients from our Bio/Databank were analysed. RNA sequencing of samples from the nasal mucosa from patients, carriers and controls followed by transcriptome analysis was performed. RESULTS: We identified 13 patients from 9 families with a CF-like phenotype consisting of recurrent lower respiratory infections (13/13), failure to thrive (13/13) and chronic diarrhoea (8/13), with high morbidity and mortality. All patients had biallelic variants in AGR2, (1) two splice-site variants, (2) gene deletion and (3) three missense variants. We confirmed aberrant AGR2 transcripts caused by an intronic variant and complete absence of AGR2 transcripts caused by the large gene deletion, resulting in loss of function (LoF). Furthermore, transcriptome analysis identified significant downregulation of components of the mucociliary machinery (intraciliary transport, cilium organisation), as well as upregulation of immune processes. CONCLUSION: We describe a previously unrecognised autosomal recessive disorder caused by AGR2 variants. AGR2-related disease should be considered as a differential diagnosis in patients presenting a CF-like phenotype. This has implications for the molecular diagnosis and management of these patients. AGR2 LoF is likely the disease mechanism, with consequent impairment of the mucociliary defence machinery. Future studies should aim to establish a better understanding of the disease pathophysiology and to identify potential drug targets.


Asunto(s)
Fibrosis Quística , Mucoproteínas/genética , Proteínas Oncogénicas/genética , Fibrosis Quística/diagnóstico , Fibrosis Quística/genética , Regulador de Conductancia de Transmembrana de Fibrosis Quística/genética , Exoma , Humanos , Mutación , Fenotipo
11.
Clin Genet ; 101(2): 247-254, 2022 02.
Artículo en Inglés | MEDLINE | ID: mdl-34708404

RESUMEN

Biallelic changes in the ZNFX1 gene have been recently reported to cause severe familial immunodeficiency. Through a search of our bio/databank with information from genetic testing of >55 000 individuals, we identified nine additional patients from seven families with six novel homozygous ZNFX1 variants. Consistent with the previously described phenotype, our patients suffered from monocytosis, thrombocytopenia, hepatosplenomegaly, recurrent infections, and lymphadenopathy. The two most severely affected probands also had renal involvement and clinical presentations compatible with hemophagocytic lymphohistiocytosis. The disease was less lethal among our patients than previously reported. We identified two missense changes, two variants predicted to result in complete protein loss through nonsense-mediated decay, and two frameshift changes that likely introduce a truncation. Our findings (i) independently confirm the role of ZNFX1 in primary genetic immunodeficiency, (ii) expand the genetic and clinical spectrum of ZNFX1-related disease, and (iii) illustrate the utility of large, well-curated, and continually updated genotype-phenotype databases in resolving molecular diagnoses of patients with initially negative genetic testing findings.


Asunto(s)
Alelos , Antígenos de Neoplasias/genética , Enfermedades Hematológicas/diagnóstico , Enfermedades Hematológicas/genética , Mutación , Enfermedades de Inmunodeficiencia Primaria/diagnóstico , Enfermedades de Inmunodeficiencia Primaria/genética , Mapeo Cromosómico , Biología Computacional/métodos , Análisis Mutacional de ADN , Bases de Datos Genéticas , Facies , Estudios de Asociación Genética , Predisposición Genética a la Enfermedad , Homocigoto , Humanos , Linaje , Fenotipo
12.
Genet Med ; 23(8): 1551-1568, 2021 08.
Artículo en Inglés | MEDLINE | ID: mdl-33875846

RESUMEN

PURPOSE: Within this study, we aimed to discover novel gene-disease associations in patients with no genetic diagnosis after exome/genome sequencing (ES/GS). METHODS: We followed two approaches: (1) a patient-centered approach, which after routine diagnostic analysis systematically interrogates variants in genes not yet associated to human diseases; and (2) a gene variant centered approach. For the latter, we focused on de novo variants in patients that presented with neurodevelopmental delay (NDD) and/or intellectual disability (ID), which are the most common reasons for genetic testing referrals. Gene-disease association was assessed using our data repository that combines ES/GS data and Human Phenotype Ontology terms from over 33,000 patients. RESULTS: We propose six novel gene-disease associations based on 38 patients with variants in the BLOC1S1, IPO8, MMP15, PLK1, RAP1GDS1, and ZNF699 genes. Furthermore, our results support causality of 31 additional candidate genes that had little published evidence and no registered OMIM phenotype (56 patients). The phenotypes included syndromic/nonsyndromic NDD/ID, oral-facial-digital syndrome, cardiomyopathies, malformation syndrome, short stature, skeletal dysplasia, and ciliary dyskinesia. CONCLUSION: Our results demonstrate the value of data repositories which combine clinical and genetic data for discovering and confirming gene-disease associations. Genetic laboratories should be encouraged to pursue such analyses for the benefit of undiagnosed patients and their families.


Asunto(s)
Exoma , Discapacidad Intelectual , Secuencia de Bases , Exoma/genética , Humanos , Discapacidad Intelectual/diagnóstico , Discapacidad Intelectual/genética , Proteínas del Tejido Nervioso , Fenotipo , Secuenciación del Exoma
14.
Acta Neuropathol Commun ; 7(1): 201, 2019 12 05.
Artículo en Inglés | MEDLINE | ID: mdl-31806013

RESUMEN

The presence of genome-wide DNA hypermethylation is a hallmark of lower grade gliomas (LGG) with isocitrate dehydrogenase (IDH) mutations. Further molecular classification of IDH mutant gliomas is defined by the presence (IDHmut-codel) or absence (IDHmut-noncodel) of hemizygous codeletion of chromosome arms 1p and 19q. Despite the DNA hypermethylation seen in bulk tumors, intra-tumoral heterogeneity at the epigenetic level has not been thoroughly analyzed. To address this question, we performed the first epigenetic profiling of single cells in a cohort of 5 gliomas with IDH1 mutation using single nucleus Assay for Transposase-Accessible Chromatin with high-throughput sequencing (snATAC-seq). Using the Fluidigm HT IFC microfluidics platform, we generated chromatin accessibility maps from 336 individual nuclei, and identified variable promoter accessibility of non-coding RNAs in LGGs. Interestingly, local chromatin structures of several non-coding RNAs are significant factors that contribute to heterogeneity, and show increased promoter accessibility in IDHmut-noncodel samples. As an example for clinical significance of this result, we identify CYTOR as a poor prognosis factor in gliomas with IDH mutation. Open chromatin assay points to differential accessibility of non-coding RNAs as an important source of epigenetic heterogeneity within individual tumors and between molecular subgroups. Rare populations of nuclei that resemble either IDH mutant molecular group co-exist within IDHmut-noncodel and IDHmut-codel groups, and along with non-coding RNAs may be an important issue to consider for future studies, as they may help guide predict treatment response and relapse.A web-based explorer for the data is available at shiny.turcanlab.org.


Asunto(s)
Neoplasias Encefálicas/genética , Núcleo Celular/genética , Cromatina/genética , Epigénesis Genética/genética , Glioma/genética , Isocitrato Deshidrogenasa/genética , Neoplasias Encefálicas/patología , Núcleo Celular/patología , Cromatina/patología , Estudios de Cohortes , Glioma/patología , Humanos , Mutación/genética , Análisis de Secuencia de ARN/métodos
15.
Nat Med ; 24(8): 1192-1203, 2018 08.
Artículo en Inglés | MEDLINE | ID: mdl-29988124

RESUMEN

The oncometabolite (R)-2-hydroxyglutarate (R-2-HG) produced by isocitrate dehydrogenase (IDH) mutations promotes gliomagenesis via DNA and histone methylation. Here, we identify an additional activity of R-2-HG: tumor cell-derived R-2-HG is taken up by T cells where it induces a perturbation of nuclear factor of activated T cells transcriptional activity and polyamine biosynthesis, resulting in suppression of T cell activity. IDH1-mutant gliomas display reduced T cell abundance and altered calcium signaling. Antitumor immunity to experimental syngeneic IDH1-mutant tumors induced by IDH1-specific vaccine or checkpoint inhibition is improved by inhibition of the neomorphic enzymatic function of mutant IDH1. These data attribute a novel, non-tumor cell-autonomous role to an oncometabolite in shaping the tumor immune microenvironment.


Asunto(s)
Glutaratos/metabolismo , Inmunidad , Linfocitos T/inmunología , Adenosina Trifosfato/metabolismo , Animales , Apoptosis , Neoplasias Encefálicas/genética , Neoplasias Encefálicas/inmunología , Calcio/metabolismo , Línea Celular Tumoral , Proliferación Celular , Glioma/genética , Glioma/inmunología , Humanos , Isocitrato Deshidrogenasa/genética , Isocitrato Deshidrogenasa/metabolismo , Activación de Linfocitos/inmunología , Ratones Endogámicos C57BL , Mutación/genética , Factores de Transcripción NFATC/metabolismo , Comunicación Paracrina , Poliaminas/metabolismo , ARN Mensajero/genética , ARN Mensajero/metabolismo , Receptores de Antígenos de Linfocitos T/metabolismo , Transducción de Señal
16.
Gene ; 594(2): 268-271, 2016 Dec 15.
Artículo en Inglés | MEDLINE | ID: mdl-27613142

RESUMEN

Protein expression can be controlled via AUG sequences located upstream to the initiation codon in the 5' end untranslated region (5' UTR). Our study was focused on the effect of distance between the initiation codon and the first upstream AUG. An inhibitory effect on protein expression was established when AUG exists in 5' UTR, and this effect is increased when multiple AUG sequences occur there. The study was performed with ATG16L2, a non-lethal gene with no introns or upstream AUG sequence to avoid any interference. New mutations were generated at different locations within the promoter region of ATG16L2 gene and added to a plasmid construct containing a luciferase gene reporter gene. The results show a clear relationship between the distance of the novel AUGs from initiation codon and protein expression. The inhibitory effect was even stronger when multiple AUG sequences were present in 5' UTR.


Asunto(s)
Regiones no Traducidas 5' , Codón Iniciador , Regulación de la Expresión Génica , Mutación , Regiones Promotoras Genéticas , Animales , Proteínas Relacionadas con la Autofagia/biosíntesis , Proteínas Relacionadas con la Autofagia/genética , Codón Iniciador/genética , Codón Iniciador/metabolismo , Humanos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...