Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
Math Biosci ; 372: 109183, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38554855

RESUMEN

We propose a continuum model for pattern formation, based on the multiphase model framework, to explore in vitro cell patterning within an extracellular matrix (ECM). We demonstrate that, within this framework, chemotaxis-driven cell migration can lead to the formation of cell clusters and vascular-like structures in 1D and 2D respectively. The influence on pattern formation of additional mechanisms commonly included in multiphase tissue models, including cell-matrix traction, contact inhibition, and cell-cell aggregation, are also investigated. Using sensitivity analysis, the relative impact of each model parameter on the simulation outcomes is assessed to identify the key parameters involved. Chemoattractant-matrix binding is further included, motivated by previous experimental studies, and found to reduce the spatial scale of patterning to within a biologically plausible range for capillary structures. Key findings from the in-depth parameter analysis of the 1D models, both with and without chemoattractant-matrix binding, are demonstrated to translate well to the 2D model, obtaining vascular-like cell patterning for multiple parameter regimes. Overall, we demonstrate a biologically-motivated multiphase model capable of generating long-term pattern formation on a biologically plausible spatial scale both in 1D and 2D, with applications for modelling in vitro vascular network formation.


Asunto(s)
Quimiotaxis , Matriz Extracelular , Modelos Biológicos , Quimiotaxis/fisiología , Matriz Extracelular/fisiología , Matriz Extracelular/metabolismo , Humanos , Movimiento Celular/fisiología , Simulación por Computador
2.
Mater Today Bio ; 24: 100923, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-38226014

RESUMEN

Stromal cells are key components of the tumour microenvironment (TME) and their incorporation into 3D engineered tumour-stroma models is essential for tumour mimicry. By engineering tumouroids with distinct tumour and stromal compartments, it has been possible to identify how gene expression of tumour cells is altered and influenced by the presence of different stromal cells. Ameloblastoma is a benign epithelial tumour of the jawbone. In engineered, multi-compartment tumouroids spatial transcriptomics revealed an upregulation of oncogenes in the ameloblastoma transcriptome where osteoblasts were present in the stromal compartment (bone stroma). Where a gingival fibroblast stroma was engineered, the ameloblastoma tumour transcriptome revealed increased matrix remodelling genes. This study provides evidence to show the stromal-specific effect on tumour behaviour and illustrates the importance of engineering biologically relevant stroma for engineered tumour models. Our novel results show that an engineered fibroblast stroma causes the upregulation of matrix remodelling genes in ameloblastoma which directly correlates to measured invasion in the model. In contrast the presence of a bone stroma increases the expression of oncogenes by ameloblastoma cells.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...