Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
Front Microbiol ; 13: 961349, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36386662

RESUMEN

The current work is aimed at isolating and identifying new Entomopathogenic bacterium (EPB) strains associated with Steinernema feltiae and assessing the EPB's biocontrol potential on Aphis punicae and Aphis illinoisensis adults in the laboratory. From S. feltiae, five bacterial isolates were isolated and molecularly characterized. Lysinibacillus xylanilyticus strain TU-2, Lysinibacillus xylanilyticus strain BN-13, Serratia liquefaciens strain TU-6, Stenotrophomonas tumulicola strain T5916-2-1b, and Pseudochrobactrum saccharolyticum strain CCUG are the strains. Pathogenicity tests demonstrated that bacterial cells were more toxic against the two aphid species than bacterial cell-free supernatants. S. tumulicola strain T5916-2-1b cells and filtrate were reported to have the strongest potential to kill A. punicae and A. illinoisensis individuals within 6 h after treatment, with 100% mortality of both insects 24 and 48 h after treatment. Based on the results of the study, it looked like endogenous Steinernema-associated EPB could be used directly as a biocontrol agent for A. punicae and A. illinoisensis.

2.
PLoS One ; 17(6): e0268348, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35653406

RESUMEN

Selenium is an important micronutrient that has antioxidant, growth potential, and reproduction enhancement abilities in various organisms. The aquaculture industry is a significant contributor towards meeting the dietary requirements of a majority of the global population, which further warrants developing novel approaches for enhancing the production of dietary fish. This study was performed to assess the growth performance of Nile tilapia (Oreochromis niloticus) fingerlings (1 gm in average weight and 2.75 cm in average length) upon nano-selenium (Se-Nps) supplementation. Nanoselenium was synthesized using high-energy ball milling (HEBM) using a 10-hour dry milling technique at 10:1 ball-to-powder ratio (BPR), size characterized by XRD and TEM, followed by mixing with basal feed in desired concentrations (0.5 mg/kg, 1 mg/kg, and 2 mg/kg) and administration to Nile tilapia fingerlings for 30 days, followed by the evaluation of growth performance parameters, fatty acid profile analysis using GC-MS, and nutritional quality index (NQI): [Thrombogenicity Index (IT), Atherogenicity Index (IA), n-3/n-6, n-6/n-3)]. Nile tilapia supplemented with 1 mg/kg Se-Nps showed improved growth performance (RGR: 1576.04%, SGR: 4.70%, and FCR: 1.91), demonstrated by higher survivability (> 95%), isometric growth (coefficient of allometry, b = 2.81), and higher weight gain compared to control (RGR: 680.41%, SGR: 3.42%, and FCR: 1.31), 0.5 mg/kg Se-Nps (RGR: 770.83%, SGR: 3.61%, and FCR: 1.18) and 2 mg/kg Se-Nps (RGR: 383.67%, SGR: 2.63%, and FCR: 1.22). The average length-weight relationship assessed as the condition factor (K) was highest in the 1 mg/kg Se-Nps group compared to others (p < 0.05). GC-MS analysis revealed that Nile tilapia supplemented with 1 mg/kg Se-Nps showed better meat quality, higher amount of n-3 fatty acids, eicosapentaenoic acid, and docosahexaenoic acid, high PUFA/SAFA ratios (1.35) and n-3/n-6 (0.33) ratios, with low atherogenicity index (0.36) and thrombogenic index (0.44), and relatively low n-6/n-3 fatty acid ratio (3.00) compared to other groups. Overall, Se-Nps supplementation at 1 mg/kg enhanced the growth performance and meat quality in Nile tilapia, and therefore could be a potential growth-promoting micronutrient for aquaculture enhancement.


Asunto(s)
Cíclidos , Nanopartículas , Selenio , Alimentación Animal/análisis , Animales , Ácidos Grasos/análisis , Micronutrientes/análisis , Valor Nutritivo , Selenio/análisis , Selenio/farmacología
3.
Sci Rep ; 12(1): 5459, 2022 03 31.
Artículo en Inglés | MEDLINE | ID: mdl-35361845

RESUMEN

The recent increase in the global incidence of dengue fever resulted in over 2.7 million cases in Latin America and many cases in Southeast Asia and has warranted the development and application of early warning systems (EWS) for futuristic outbreak prediction. EWS pertaining to dengue outbreaks is imperative; given the fact that dengue is linked to environmental factors owing to its dominance in the tropics. Prediction is an integral part of EWS, which is dependent on several factors, in particular, climate, geography, and environmental factors. In this study, we explore the role of increased susceptibility to a DENV serotype and climate variability in developing novel predictive models by analyzing RT-PCR and DENV-IgM confirmed cases in Singapore and Honduras, which reported high dengue incidence in 2019 and 2020, respectively. A random-sampling-based susceptible-infected-removed (SIR) model was used to obtain estimates of the susceptible fraction for modeling the dengue epidemic, in addition to the Bayesian Markov Chain Monte Carlo (MCMC) technique that was used to fit the model to Singapore and Honduras case report data from 2012 to 2020. Regression techniques were used to implement climate variability in two methods: a climate-based model, based on individual climate variables, and a seasonal model, based on trigonometrically varying transmission rates. The seasonal model accounted for 98.5% and 92.8% of the variance in case count in the 2020 Singapore and 2019 Honduras outbreaks, respectively. The climate model accounted for 75.3% and 68.3% of the variance in Singapore and Honduras outbreaks respectively, besides accounting for 75.4% of the variance in the major 2013 Singapore outbreak, 71.5% of the variance in the 2019 Singapore outbreak, and over 70% of the variance in 2015 and 2016 Honduras outbreaks. The seasonal model accounted for 14.2% and 83.1% of the variance in the 2013 and 2019 Singapore outbreaks, respectively, in addition to 91% and 59.5% of the variance in the 2015 and 2016 Honduras outbreaks, respectively. Autocorrelation lag tests showed that the climate model exhibited better prediction dynamics for Singapore outbreaks during the dry season from May to August and in the rainy season from June to October in Honduras. After incorporation of susceptible fractions, the seasonal model exhibited higher accuracy in predicting outbreaks of higher case magnitude, including those of the 2019-2020 dengue epidemic, in comparison to the climate model, which was more accurate in outbreaks of smaller magnitude. Such modeling studies could be further performed in various outbreaks, such as the ongoing COVID-19 pandemic to understand the outbreak dynamics and predict the occurrence of future outbreaks.


Asunto(s)
COVID-19 , Dengue , Teorema de Bayes , Dengue/epidemiología , Brotes de Enfermedades , Humanos , Cadenas de Markov , Pandemias
4.
Biology (Basel) ; 11(2)2022 Feb 11.
Artículo en Inglés | MEDLINE | ID: mdl-35205161

RESUMEN

Virachola livia (Lepidoptera: Lycaenidae) and Ectomyelois ceratoniae (Lepidoptera: Pyralidae) are the key pests of pomegranates in Saudi Arabia that are managed mainly using broad-spectrum pesticides. Interactions between the entomopathogenic nematodes (EPNs) Steinernematids, and Heterorhabditids, and their entomopathogenic bacterial symbionts (EPBs) have long been considered monoxenic 2-partner associations responsible for killing insects and, therefore, are widely used in insect pest biocontrol. However, there are limited reports identifying such organisms in Taif, Saudi Arabia. The current study aimed to identify the EPNs and their associated bacteria isolated from Taif, Saudi Arabia, and evaluate their biocontrol potential on third instar larvae of V. livia and E. ceratoniae under laboratory conditions. A total of 35 EPN isolates belonging to Steinernema (20) and Heterorhabditis (15) were recovered from 320 soil samples. Twenty-six isolates of symbiotic or associated bacteria were isolated from EPNs and molecularly identified as Xenorhabdus (6 isolates), Photorhabdus (4 isolates), Pseudomonas (7), or Stenotrophomonas (9). A pathogenicity assay revealed that Steinernema spp. were more virulent than Heterorhabditis spp. against the two pomegranate insects, with LC50 values of 18.5 and 13.6 infective juveniles (IJs)/larva of V. livia for Steinernema spp. and 52 and 32.4 IJs/larva of V. livia for Heterorhabditis spp. at 48 and 72 h post-treatment, respectively. Moreover, LC50 values of 9 and 6.6 IJs/larva (Steinernema spp.) and 34.4 and 26.6 IJs/larva (Heterorhabditis spp.) were recorded for E. ceratoniae larvae at 48 and 72 h post-treatment. In addition, the EPB Stenotrophomonas maltophilia CQ1, isolated from Steinernema spp., surpassed Pseudomonas mosselii SJ10, associated with Heterorhabditis spp., in their ability to kill V. livia or E. ceratoniae larvae within 6 h post-application, resulting in 100% mortality in both insects after 24 and 48 h of exposure. We conclude that either application of EPNs' IJs or their associated EPBs could serve as potential biocontrol agents for V. livia and E. ceratoniae.

5.
Front Bioeng Biotechnol ; 9: 721717, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34692654

RESUMEN

Selenium and zinc are important dietary micronutrients having antimicrobial and antioxidant roles, thereby assisting in normal development, and an enhanced immune system. Supplementation of selenium and zinc for enhancing the growth performance and reproductive capacity in fish was explored in this study. Selenium nanoparticles (SeNPs) and zinc oxide nanoparticles (ZnONPs) were synthesized by high-energy ball milling (HEBM) using a 10-h dry milling technique at a 10:1 ball-to-powder ratio (BPR) and were premixed with basal feed followed by the administration to adult zebra fish (D. rerio) (2 months old) for 30 days. Growth analysis revealed that zebra fish fed with SeNPs + ZnONPs (2 mg/ kg, equimolar mixture) had significantly higher length and weight than only SeNP (2 mg/ kg) or ZnONP (2 mg/ kg) groups and control zebra fish (p < 0.05). The average length-weight relationships were assessed by estimating the condition factor (C), which was highest in the SeNP + ZnONP group (1.96), followed by a downward trend in SeNP (C = 1.15) and ZnONP (1.11) (p < 0.05). Relative gene expression of growth hormone and insulin-like growth factor-1 was significantly high in the SeNP + ZnONP group compared to other groups (p < 0.05), which indicated that combined administration of both the nanoparticles in basal feed enhanced the growth performance of zebra fish. Intracellular ROS generation was low in the combined group, followed by control, SeNP, and ZnONP groups, indicating higher concentrations of both nanoparticles, in particular, ZnONPs induced oxidative stress. Fecundity and the development of fertilized embryos were significantly high in the SeNP + ZnONP-treated zebra fish compared to only the SeNP- or ZnONP-treated group or control (p < 0.05). These findings indicated that supplementation of SeNP + ZnONP in basal feed could considerably improve the growth performance and development of zebra fish which could be exploited for enhancing aquaculture production.

6.
PeerJ ; 9: e12112, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34631312

RESUMEN

A field experiment was conducted during the Rabi season 2017-2018 (October-March) at the University of Agriculture, Peshawar research farm to examine the influence of different nitrogen (N) and phosphorus (P) levels on two different oat varieties: Australian and Ukrainian. The treatments included control and three levels of nitrogen and phosphorus at 30, 60, and 90 kg ha-1. The treatments were arranged in randomized complete block design (RCBD) and replicated three times. The findings showed that the oat varieties were significantly different from one another in yield and yield parameters. The Australian variety recorded higher emergence (49 plants m-2), days to emergence (15 days), days to flowering (122 days), days to maturity (145 days), plant height (142.7 cm), number of leaves (6.03 leaves plant-1), number of tillers (92.2 tillers m-1), biological yield (8,179.2 kg ha-1), and grain yield (3,725.6 kg ha-1) than the Ukrainian variety. Similarly, different N and P levels, the maximum days to emergence, days to flowering, and days to maturity were recorded in a control plot. The application of 105 kg N + 90 kg P ha-1 was statistically similar to the application of 105 kg N + 60 kg P ha-1. Maximum emergence (60 plants m-2), number of leaves (7.0 leaves plant-1), plant height (118.6 cm), number of tillers m-1 (102.6), biological yield (9,687.5 kg ha-1), and grain yield (4,416.7 kg ha-1) were determined in Australian variety. Based on the findings of this study, the Australian variety performed better in terms of yield and yield components and the application of N and P fertilizers at the rate of 105 kg N + 60 kg P ha-1 produced the best results in both oat varieties.

7.
PLoS One ; 16(9): e0257023, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34555032

RESUMEN

Abiotic stress, especially a lack of water, can significantly reduce crop yields. In this study, we evaluated the physiological and biochemical effects of potassium sulfate (K2SO4) fertilizer and varied irrigation regimes on the economically significant oilseed crop, Brassica juncea L, under open field conditions. Two cultivars (RH-725 and RH-749) of B. juncea were used in a randomized complete block design experiment with three replicates. Irrigation regimes consisted of a control (double irrigation: once at the 50% flowering and another at 50% fruiting stages), early irrigation (at 50% flowering only), late irrigation (at 50% fruiting only) and stress (no irrigation). The K2SO4 applications were: control (K0, no fertilization); K1, 10 kg ha-1; and K2, 20 kg ha-1. We measured growth via fresh and dry plant weight, plant height, root length, and leaf area. All the growth parameters were higher in RH-749. The physiological attributes, including the membrane stability index and relative water content, were higher at the 50% flowering stage in RH-749. The amount of antioxidant enzymes (catalase (CAT), guaiacol peroxidase (POX), ascorbate peroxidase (APX), and superoxide dismutase (SOD)) was enhanced when both plants were fertilized during water stress. All of these enzymes had higher activity in RH-749. The total chlorophyll content and photosynthesis rate were considerably higher in RH-749, which leaked fewer electrolytes and maintained a less destructive osmotic potential under limited water conditions. The results indicated that it is water-stress tolerant when given a high concentration of K2SO4, which alleviated the adverse effects of water stress on growth and physiology.


Asunto(s)
Riego Agrícola/métodos , Fertilizantes/análisis , Planta de la Mostaza/efectos de los fármacos , Hojas de la Planta/efectos de los fármacos , Estrés Fisiológico/efectos de los fármacos , Sulfatos/farmacología , Ascorbato Peroxidasas/metabolismo , Catalasa/metabolismo , Clorofila/metabolismo , Sequías , Flores/efectos de los fármacos , Flores/crecimiento & desarrollo , Flores/metabolismo , Frutas/efectos de los fármacos , Frutas/crecimiento & desarrollo , Frutas/metabolismo , Planta de la Mostaza/crecimiento & desarrollo , Planta de la Mostaza/metabolismo , Peroxidasa/metabolismo , Fotosíntesis , Hojas de la Planta/crecimiento & desarrollo , Hojas de la Planta/metabolismo , Raíces de Plantas/efectos de los fármacos , Raíces de Plantas/crecimiento & desarrollo , Raíces de Plantas/metabolismo , Especificidad de la Especie , Estrés Fisiológico/fisiología , Superóxido Dismutasa/metabolismo , Agua/metabolismo
8.
Plants (Basel) ; 10(6)2021 Jun 04.
Artículo en Inglés | MEDLINE | ID: mdl-34199744

RESUMEN

This study was conducted on tomato (Solanum lycopersicum cv. K-21) to investigate the bioprotective nature of Pseudomonas fluorescens and its interactive effects with Meloidogyne incognita in terms of growth biomarkers, changes in biochemical attributes and modulation in antioxidant enzymes of the tomato plant. In this study, we grew tomato plants with M. incognita and P. fluorescens in separate pots, simultaneously and sequentially (15 days prior or post) after 15 days of seed sowing. The sequential inoculation of Mi15→Pf maximally increased the root-knot index and decreased the nematode population. It was also noted that inoculation suppressed the plant growth biomarkers in comparison to control. However, maximum suppression in nematode reproduction and increment in growth and physiological attributes were observed when P. fluorescens was applied 15 days prior to the nematode (Pf15→Mi) as compared to control. All the treatments showed an increase in antioxidant enzymes. Expression of phenol content and defensive enzymes such as peroxidase (POX) and superoxide dismutase (SOD) increased, in contrast to a significant reduction in malondialdehyde (MDA) and hydrogen peroxide (H2O2) contents when compared with the untreated inoculated plants. However, the highest levels of POX and SOD, and a lowest of phenol, MDA and H2O2 were displayed in the treatment Pf15→Mi, followed by Mi+Pf and Mi15→Pf.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...