Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 30
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
bioRxiv ; 2024 Jan 31.
Artículo en Inglés | MEDLINE | ID: mdl-38405852

RESUMEN

Microtubule polarity and dynamic polymerization originate from the self-association properties of the a-tubulin heterodimer. For decades, it has remained poorly understood how the tubulin cofactors, TBCD, TBCE, TBCC, and the Arl2 GTPase mediate a-tubulin biogenesis from α- and ß-tubulins. Here, we use cryogenic electron microscopy to determine structures of tubulin cofactors bound to αß-tubulin. These structures show that TBCD, TBCE, and Arl2 form a heterotrimeric cage-like TBC-DEG assembly around the a-tubulin heterodimer. TBCD wraps around Arl2 and almost entirely encircles -tubulin, while TBCE forms a lever arm that anchors along the other end of TBCD and rotates α-tubulin. Structures of the TBC-DEG-αß-tubulin assemblies bound to TBCC reveal the clockwise rotation of the TBCE lever that twists a-tubulin by pulling its C-terminal tail while TBCD holds -tubulin in place. Altogether, these structures uncover transition states in αß-tubulin biogenesis, suggesting a vise-like mechanism for the GTP-hydrolysis dependent a-tubulin biogenesis mediated by TBC-DEG and TBCC. These structures provide the first evidence of the critical functions of the tubulin cofactors as enzymes that regulate the invariant organization of αß-tubulin, by catalyzing α- and ß-tubulin assembly, disassembly, and subunit exchange which are crucial for regulating the polymerization capacities of αß-tubulins into microtubules.

2.
Mol Biol Cell ; 34(11): ar111, 2023 10 01.
Artículo en Inglés | MEDLINE | ID: mdl-37610838

RESUMEN

Kinesin-5 crosslinks and slides apart microtubules to assemble, elongate, and maintain the mitotic spindle. Kinesin-5 is a tetramer, where two N-terminal motor domains are positioned at each end of the motor, and the coiled-coil stalk domains are organized into a tetrameric bundle through the bipolar assembly (BASS) domain. To dissect the function of the individual structural elements of the motor, we constructed a minimal kinesin-5 tetramer (mini-tetramer). We determined the x-ray structure of the extended, 34-nm BASS domain. Guided by these structural studies, we generated active bipolar kinesin-5 mini-tetramer motors from Drosophila melanogastor and human orthologues which are half the length of native kinesin-5. We then used these kinesin-5 mini-tetramers to examine the role of two unique structural adaptations of kinesin-5: 1) the length and flexibility of the tetramer, and 2) the C-terminal tails which interact with the motor domains to coordinate their ATPase activity. The C-terminal domain causes frequent pausing and clustering of kinesin-5. By comparing microtubule crosslinking and sliding by mini-tetramer and full-length kinesin-5, we find that both the length and flexibility of kinesin-5 and the C-terminal tails govern its ability to crosslink microtubules. Once crosslinked, stiffer mini-tetramers slide antiparallel microtubules more efficiently than full-length motors.


Asunto(s)
Cinesinas , Microtúbulos , Humanos , Animales , Huso Acromático , Análisis por Conglomerados , Drosophila
3.
Cell Mol Life Sci ; 78(16): 6051-6068, 2021 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-34274977

RESUMEN

Two modes of motility have been reported for bi-directional kinesin-5 motors: (a) context-dependent directionality reversal, a mode in which motors undergo persistent minus-end directed motility at the single-molecule level and switch to plus-end directed motility in different assays or under different conditions, such as during MT gliding or antiparallel sliding or as a function of motor clustering; and (b) bi-directional motility, defined as movement in two directions in the same assay, without persistent unidirectional motility. Here, we examine how modulation of motor-microtubule (MT) interactions affects these two modes of motility for the bi-directional kinesin-5, Cin8. We report that the large insert in loop 8 (L8) within the motor domain of Cin8 increases the MT affinity of Cin8 in vivo and in vitro and is required for Cin8 intracellular functions. We consistently found that recombinant purified L8 directly binds MTs and L8 induces single Cin8 motors to behave according to context-dependent directionality reversal and bi-directional motility modes at intermediate ionic strength and according to a bi-directional motility mode in an MT surface-gliding assay under low motor density conditions. We propose that the largely unstructured L8 facilitates flexible anchoring of Cin8 to the MTs. This flexible anchoring enables the direct observation of bi-directional motility in motility assays. Remarkably, although L8-deleted Cin8 variants exhibit a strong minus-end directed bias at the single-molecule level, they also exhibit plus-end directed motility in an MT-gliding assay. Thus, L8-induced flexible MT anchoring is required for bi-directional motility of single Cin8 molecules but is not necessary for context-dependent directionality reversal of Cin8 in an MT-gliding assay.


Asunto(s)
Cinesinas/metabolismo , Microtúbulos/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Secuencia de Aminoácidos , Movimiento/fisiología , Saccharomyces cerevisiae/metabolismo
4.
Sci Adv ; 7(6)2021 02.
Artículo en Inglés | MEDLINE | ID: mdl-33547070

RESUMEN

Directed active motion of motor proteins is a vital process in virtually all eukaryotic cells. Nearly a decade ago, the discovery of directionality switching of mitotic kinesin-5 motors challenged the long-standing paradigm that individual kinesin motors are characterized by an intrinsic directionality. The underlying mechanism, however, remains unexplained. Here, we studied clustering-induced directionality switching of the bidirectional kinesin-5 Cin8. Based on the characterization of single-molecule and cluster motility, we developed a model that predicts that directionality switching of Cin8 is caused by an asymmetric response of its active motion to opposing forces, referred to as drag. The model shows excellent quantitative agreement with experimental data obtained under high and low ionic strength conditions. Our analysis identifies a robust and general mechanism that explains why bidirectional motor proteins reverse direction in response to seemingly unrelated experimental factors including changes in motor density and molecular crowding, and in multimotor motility assays.

5.
Elife ; 92020 01 20.
Artículo en Inglés | MEDLINE | ID: mdl-31958056

RESUMEN

Kinesin-5 motors organize mitotic spindles by sliding apart microtubules. They are homotetramers with dimeric motor and tail domains at both ends of a bipolar minifilament. Here, we describe a regulatory mechanism involving direct binding between tail and motor domains and its fundamental role in microtubule sliding. Kinesin-5 tails decrease microtubule-stimulated ATP-hydrolysis by specifically engaging motor domains in the nucleotide-free or ADP states. Cryo-EM reveals that tail binding stabilizes an open motor domain ATP-active site. Full-length motors undergo slow motility and cluster together along microtubules, while tail-deleted motors exhibit rapid motility without clustering. The tail is critical for motors to zipper together two microtubules by generating substantial sliding forces. The tail is essential for mitotic spindle localization, which becomes severely reduced in tail-deleted motors. Our studies suggest a revised microtubule-sliding model, in which kinesin-5 tails stabilize motor domains in the microtubule-bound state by slowing ATP-binding, resulting in high-force production at both homotetramer ends.


Asunto(s)
Cinesinas/metabolismo , Microtúbulos/metabolismo , Adenosina Difosfato/metabolismo , Adenosina Trifosfato/metabolismo , Microscopía por Crioelectrón , Humanos , Hidrólisis , Cinesinas/química , Cinesinas/ultraestructura , Cinética , Unión Proteica , Dominios Proteicos , Huso Acromático/metabolismo
6.
Mol Biol Cell ; 30(12): 1490-1504, 2019 06 01.
Artículo en Inglés | MEDLINE | ID: mdl-30969896

RESUMEN

XMAP215/Stu2/Alp14 accelerates tubulin polymerization while processively tracking microtubule (MT) plus ends via tumor overexpressed gene (TOG) domain arrays. It remains poorly understood how these functions arise from tubulin recruitment, mediated by the distinct TOG1 and TOG2 domains, or the assembly of these arrays into large square complexes. Here, we describe a relationship between MT plus-end tracking and polymerase functions revealing their distinct origin within TOG arrays. We study Alp14 mutants designed based on structural models, with defects in either tubulin recruitment or self-organization. Using in vivo live imaging in fission yeast and in vitro MT dynamics assays, we show that tubulins recruited by TOG1 and TOG2 serve concerted, yet distinct, roles in MT plus-end tracking and polymerase functions. TOG1 is critical for processive plus-end tracking, whereas TOG2 is critical for accelerating tubulin polymerization. Inactivating interfaces that stabilize square complexes lead to defects in both processive MT plus-end tracking and polymerase. Our studies suggest that a dynamic cycle between square and unfurled TOG array states gives rise to processive polymerase activity at MT plus ends.


Asunto(s)
Microtúbulos/metabolismo , Schizosaccharomyces/metabolismo , Modelos Biológicos , Unión Proteica , Dominios Proteicos , Tubulina (Proteína)/química , Tubulina (Proteína)/metabolismo
8.
Elife ; 72018 11 13.
Artículo en Inglés | MEDLINE | ID: mdl-30422110

RESUMEN

XMAP215/Stu2/Alp14 proteins accelerate microtubule plus-end polymerization by recruiting tubulins via arrays of tumor overexpressed gene (TOG) domains, yet their mechanism remains unknown. Here, we describe the biochemical and structural basis for TOG arrays in recruiting and polymerizing tubulins. Alp14 binds four tubulins via dimeric TOG1-TOG2 subunits, in which each domain exhibits a distinct exchange rate for tubulin. X-ray structures revealed square-shaped assemblies composed of pseudo-dimeric TOG1-TOG2 subunits assembled head-to-tail, positioning four unpolymerized tubulins in a polarized wheel-like configuration. Crosslinking and electron microscopy show Alp14-tubulin forms square assemblies in solution, and inactivating their interfaces destabilize this organization without influencing tubulin binding. An X-ray structure determined using approach to modulate tubulin polymerization revealed an unfurled assembly, in which TOG1-TOG2 uniquely bind to two polymerized tubulins. Our findings suggest a new microtubule polymerase model in which TOG arrays recruit tubulins by forming square assemblies that then unfurl, facilitating their concerted polymerization into protofilaments.


Asunto(s)
Proteínas Fúngicas/metabolismo , Proteínas Asociadas a Microtúbulos/metabolismo , Microtúbulos/metabolismo , Multimerización de Proteína , Tubulina (Proteína)/metabolismo , Cristalografía por Rayos X , Proteínas Fúngicas/química , Hongos/metabolismo , Microscopía Electrónica , Proteínas Asociadas a Microtúbulos/química , Microtúbulos/química , Modelos Moleculares , Unión Proteica , Conformación Proteica , Tubulina (Proteína)/química
9.
J Biol Chem ; 293(27): 10590-10605, 2018 07 06.
Artículo en Inglés | MEDLINE | ID: mdl-29752405

RESUMEN

The reorganization of microtubules in mitosis, meiosis, and development requires the microtubule-severing activity of katanin. Katanin is a heterodimer composed of an ATPase associated with diverse cellular activities (AAA) subunit and a regulatory subunit. Microtubule severing requires ATP hydrolysis by katanin's conserved AAA ATPase domains. Whereas other AAA ATPases form stable hexamers, we show that katanin forms only a monomer or dimers of heterodimers in solution. Katanin oligomers consistent with hexamers of heterodimers or heterododecamers were only observed for an ATP hydrolysis-deficient mutant in the presence of ATP. X-ray structures of katanin's AAA ATPase in monomeric nucleotide-free and pseudo-oligomeric ADP-bound states revealed conformational changes in the AAA subdomains that explained the structural basis for the instability of the katanin heterododecamer. We propose that the rapid dissociation of katanin AAA oligomers may lead to an autoinhibited state that prevents inappropriate microtubule severing or that cyclical disassembly into heterodimers may critically contribute to the microtubule-severing mechanism.


Asunto(s)
Adenosina Trifosfatasas/química , Proteínas de Caenorhabditis elegans/química , Katanina/química , Meiosis , Adenosina Trifosfatasas/metabolismo , Animales , Caenorhabditis elegans/enzimología , Proteínas de Caenorhabditis elegans/metabolismo , Cristalografía por Rayos X , Humanos , Katanina/metabolismo , Microtúbulos , Conformación Proteica , Multimerización de Proteína , Huso Acromático
10.
Cell Mol Life Sci ; 75(10): 1757-1771, 2018 05.
Artículo en Inglés | MEDLINE | ID: mdl-29397398

RESUMEN

Mitotic kinesin-5 bipolar motor proteins perform essential functions in mitotic spindle dynamics by crosslinking and sliding antiparallel microtubules (MTs) apart within the mitotic spindle. Two recent studies have indicated that single molecules of Cin8, the Saccharomyces cerevisiae kinesin-5 homolog, are minus end-directed when moving on single MTs, yet switch directionality under certain experimental conditions (Gerson-Gurwitz et al., EMBO J 30:4942-4954, 2011; Roostalu et al., Science 332:94-99, 2011). This finding was unexpected since the Cin8 catalytic motor domain is located at the N-terminus of the protein, and such kinesins have been previously thought to be exclusively plus end-directed. In addition, the essential intracellular functions of kinesin-5 motors in separating spindle poles during mitosis can only be accomplished by plus end-directed motility during antiparallel sliding of the spindle MTs. Thus, the mechanism and possible physiological role of the minus end-directed motility of kinesin-5 motors remain unclear. Experimental and theoretical studies from several laboratories in recent years have identified additional kinesin-5 motors that are bidirectional, revealed structural determinants that regulate directionality, examined the possible mechanisms involved and have proposed physiological roles for the minus end-directed motility of kinesin-5 motors. Here, we summarize our current understanding of the remarkable ability of certain kinesin-5 motors to switch directionality when moving along MTs.


Asunto(s)
Cinesinas/química , Cinesinas/fisiología , Proteínas Motoras Moleculares/química , Proteínas Motoras Moleculares/fisiología , Movimiento/fisiología , Animales , Humanos , Multimerización de Proteína , Saccharomyces cerevisiae , Proteínas de Saccharomyces cerevisiae/química , Proteínas de Saccharomyces cerevisiae/fisiología
11.
Mol Biol Cell ; 28(3): 359-363, 2017 Feb 01.
Artículo en Inglés | MEDLINE | ID: mdl-28137948

RESUMEN

Soluble αß-tubulin heterodimers are maintained at high concentration inside eukaryotic cells, forming pools that fundamentally drive microtubule dynamics. Five conserved tubulin cofactors and ADP ribosylation factor-like 2 regulate the biogenesis and degradation of αß-tubulins to maintain concentrated soluble pools. Here I describe a revised model for the function of three tubulin cofactors and Arl2 as a multisubunit GTP-hydrolyzing catalytic chaperone that cycles to promote αß-tubulin biogenesis and degradation. This model helps explain old and new data indicating these activities enhance microtubule dynamics in vivo via repair or removal of αß-tubulins from the soluble pools.


Asunto(s)
Proteínas de Unión al GTP/metabolismo , Microtúbulos/metabolismo , Tubulina (Proteína)/metabolismo , Factores de Ribosilacion-ADP/metabolismo , Factores de Ribosilacion-ADP/fisiología , Dimerización , Homeostasis , Humanos , Proteínas Asociadas a Microtúbulos/metabolismo , Modelos Moleculares , Chaperonas Moleculares/metabolismo
12.
J Cell Sci ; 130(4): 725-734, 2017 02 15.
Artículo en Inglés | MEDLINE | ID: mdl-28069834

RESUMEN

The bipolar kinesin-5 Cin8 switches from minus- to plus-end-directed motility under various conditions in vitro The mechanism and physiological significance of this switch remain unknown. Here, we show that under high ionic strength conditions, Cin8 moves towards and concentrates in clusters at the minus ends of stable and dynamic microtubules. Clustering of Cin8 induces a switch from fast minus- to slow plus-end-directed motility and forms sites that capture antiparallel microtubules (MTs) and induces their sliding apart through plus-end-directed motility. In early mitotic cells with monopolar spindles, Cin8 localizes near the spindle poles at microtubule minus ends. This localization is dependent on the minus-end-directed motility of Cin8. In cells with assembled bipolar spindles, Cin8 is distributed along the spindle microtubules. We propose that minus-end-directed motility is required for Cin8 clustering near the spindle poles before spindle assembly. Cin8 clusters promote the capture of microtubules emanating from the neighboring spindle poles and mediate their antiparallel sliding. This activity is essential to maximize microtubule crosslinking before bipolar spindle assembly and to induce the initial separation of the spindle poles.


Asunto(s)
Cinesinas/metabolismo , Mitosis , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/citología , Saccharomyces cerevisiae/metabolismo , Microtúbulos/metabolismo , Modelos Biológicos , Movimiento , Cuerpos Polares del Huso/metabolismo
13.
Elife ; 42015 Jul 24.
Artículo en Inglés | MEDLINE | ID: mdl-26208336

RESUMEN

Microtubule dynamics and polarity stem from the polymerization of αß-tubulin heterodimers. Five conserved tubulin cofactors/chaperones and the Arl2 GTPase regulate α- and ß-tubulin assembly into heterodimers and maintain the soluble tubulin pool in the cytoplasm, but their physical mechanisms are unknown. Here, we reconstitute a core tubulin chaperone consisting of tubulin cofactors TBCD, TBCE, and Arl2, and reveal a cage-like structure for regulating αß-tubulin. Biochemical assays and electron microscopy structures of multiple intermediates show the sequential binding of αß-tubulin dimer followed by tubulin cofactor TBCC onto this chaperone, forming a ternary complex in which Arl2 GTP hydrolysis is activated to alter αß-tubulin conformation. A GTP-state locked Arl2 mutant inhibits ternary complex dissociation in vitro and causes severe defects in microtubule dynamics in vivo. Our studies suggest a revised paradigm for tubulin cofactors and Arl2 functions as a catalytic chaperone that regulates soluble αß-tubulin assembly and maintenance to support microtubule dynamics.


Asunto(s)
Factores de Ribosilacion-ADP/metabolismo , Proteínas Asociadas a Microtúbulos/metabolismo , Microtúbulos/metabolismo , Chaperonas Moleculares/metabolismo , Multimerización de Proteína , Proteínas de Saccharomyces cerevisiae/metabolismo , Tubulina (Proteína)/metabolismo , Microscopía Electrónica , Saccharomyces cerevisiae/fisiología
14.
Elife ; 3: e02217, 2014 Apr 08.
Artículo en Inglés | MEDLINE | ID: mdl-24714498

RESUMEN

Chromosome segregation during mitosis depends upon Kinesin-5 motors, which display a conserved, bipolar homotetrameric organization consisting of two motor dimers at opposite ends of a central rod. Kinesin-5 motors crosslink adjacent microtubules to drive or constrain their sliding apart, but the structural basis of their organization is unknown. In this study, we report the atomic structure of the bipolar assembly (BASS) domain that directs four Kinesin-5 subunits to form a bipolar minifilament. BASS is a novel 26-nm four-helix bundle, consisting of two anti-parallel coiled-coils at its center, stabilized by alternating hydrophobic and ionic four-helical interfaces, which based on mutagenesis experiments, are critical for tetramerization. Strikingly, N-terminal BASS helices bend as they emerge from the central bundle, swapping partner helices, to form dimeric parallel coiled-coils at both ends, which are offset by 90°. We propose that BASS is a mechanically stable, plectonemically-coiled junction, transmitting forces between Kinesin-5 motor dimers during microtubule sliding. DOI: http://dx.doi.org/10.7554/eLife.02217.001.


Asunto(s)
Biopolímeros/química , Cinesinas/química , Secuencia de Aminoácidos , Animales , Cristalografía por Rayos X , Drosophila , Modelos Moleculares , Datos de Secuencia Molecular , Conformación Proteica , Homología de Secuencia de Aminoácido
15.
Methods Enzymol ; 540: 131-48, 2014.
Artículo en Inglés | MEDLINE | ID: mdl-24630105

RESUMEN

Microtubules (MTs) polymerize from soluble αß-tubulin and undergo rapid dynamic transitions to depolymerization at their ends. Microtubule-associated regulator proteins modulate polymerization dynamics in vivo by altering microtubule plus end conformations or influencing αß-tubulin incorporation rates. Biochemical reconstitution of dynamic MT polymerization can be visualized with total internal reflection fluorescence (TIRF) microscopy using purified MT regulators. This approach has provided extensive details on the regulation of microtubule dynamics. Here, I describe a general approach to reconstitute MT dynamic polymerization with TOG domain microtubule regulators from the XMAP215/Dis1 and CLASP families using TIRF microscopy. TIRF imaging strategies require nucleation of microtubule polymerization from surface-attached, stabilized MTs. The approaches described here can be used to study the mechanism of a wide variety of microtubule regulatory proteins.


Asunto(s)
Microscopía Fluorescente/métodos , Microtúbulos/metabolismo , Tubulina (Proteína)/metabolismo , Animales , Diseño de Equipo , Colorantes Fluorescentes/análisis , Microscopía Fluorescente/instrumentación , Proteínas Asociadas a Microtúbulos/química , Proteínas Asociadas a Microtúbulos/metabolismo , Proteínas Asociadas a Microtúbulos/ultraestructura , Microtúbulos/química , Microtúbulos/ultraestructura , Polimerizacion , Multimerización de Proteína , Estructura Terciaria de Proteína , Proteínas Recombinantes/química , Proteínas Recombinantes/metabolismo , Proteínas Recombinantes/ultraestructura , Tubulina (Proteína)/química , Tubulina (Proteína)/ultraestructura
17.
Mol Biol Cell ; 23(15): 2878-90, 2012 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-22696680

RESUMEN

XMAP215/Dis1 proteins are conserved tubulin-binding TOG-domain proteins that regulate microtubule (MT) plus-end dynamics. Here we show that Alp14, a XMAP215 orthologue in fission yeast, Schizosaccharomyces pombe, has properties of a MT polymerase. In vivo, Alp14 localizes to growing MT plus ends in a manner independent of Mal3 (EB1). alp14-null mutants display short interphase MTs with twofold slower assembly rate and frequent pauses. Alp14 is a homodimer that binds a single tubulin dimer. In vitro, purified Alp14 molecules track growing MT plus ends and accelerate MT assembly threefold. TOG-domain mutants demonstrate that tubulin binding is critical for function and plus end localization. Overexpression of Alp14 or only its TOG domains causes complete MT loss in vivo, and high Alp14 concentration inhibits MT assembly in vitro. These inhibitory effects may arise from Alp14 sequestration of tubulin and effects on the MT. Our studies suggest that Alp14 regulates the polymerization state of tubulin by cycling between a tubulin dimer-bound cytoplasmic state and a MT polymerase state that promotes rapid MT assembly.


Asunto(s)
Proteínas Asociadas a Microtúbulos , Microtúbulos , Proteínas de Schizosaccharomyces pombe , Tubulina (Proteína)/metabolismo , Interfase , Proteínas Asociadas a Microtúbulos/genética , Proteínas Asociadas a Microtúbulos/metabolismo , Microtúbulos/metabolismo , Microtúbulos/fisiología , Mutación , Unión Proteica , Schizosaccharomyces/genética , Schizosaccharomyces/metabolismo , Proteínas de Schizosaccharomyces pombe/genética , Proteínas de Schizosaccharomyces pombe/metabolismo , Huso Acromático/genética , Huso Acromático/metabolismo , Tubulina (Proteína)/química
18.
Trends Cell Biol ; 21(10): 604-14, 2011 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-21782439

RESUMEN

The molecular mechanisms by which microtubule-associated proteins (MAPs) regulate the dynamic properties of microtubules (MTs) are still poorly understood. We review recent advances in our understanding of two conserved families of MAPs, the XMAP215/Dis1 and CLASP family of proteins. In vivo and in vitro studies show that XMAP215 proteins act as microtubule polymerases at MT plus ends to accelerate MT assembly, and CLASP proteins promote MT rescue and suppress MT catastrophe events. These are structurally related proteins that use conserved TOG domains to recruit tubulin dimers to MTs. We discuss models for how these proteins might use these individual tubulin dimers to regulate dynamic behavior of MT plus ends.


Asunto(s)
Proteínas Asociadas a Microtúbulos/química , Proteínas Asociadas a Microtúbulos/metabolismo , Microtúbulos/química , Microtúbulos/metabolismo , Modelos Moleculares , Animales , Humanos , Tubulina (Proteína)/química , Tubulina (Proteína)/metabolismo , Proteínas de Xenopus/química , Proteínas de Xenopus/metabolismo
19.
Dev Cell ; 19(2): 245-58, 2010 Aug 17.
Artículo en Inglés | MEDLINE | ID: mdl-20708587

RESUMEN

Spatial regulation of microtubule (MT) dynamics contributes to cell polarity and cell division. MT rescue, in which a MT stops shrinking and reinitiates growth, is the least understood aspect of MT dynamics. Cytoplasmic Linker Associated Proteins (CLASPs) are a conserved class of MT-associated proteins that contribute to MT stabilization and rescue in vivo. We show here that the Schizosaccharomyces pombe CLASP, Cls1p, is a homodimer that binds an alphabeta-tubulin heterodimer through conserved TOG-like domains. In vitro, CLASP increases MT rescue frequency, decreases MT catastrophe frequency, and moderately decreases MT disassembly rate. CLASP binds stably to the MT lattice, recruits tubulin, and locally promotes rescues. Mutations in the CLASP TOG domains demonstrate that tubulin binding is critical for its rescue activity. We propose a mechanism for rescue in which CLASP-tubulin dimer complexes bind along the MT lattice and reverse MT depolymerization with their bound tubulin dimer.


Asunto(s)
Microtúbulos/metabolismo , Proteínas Nucleares/metabolismo , Estructura Cuaternaria de Proteína , Proteínas de Schizosaccharomyces pombe/metabolismo , Tubulina (Proteína)/química , Tubulina (Proteína)/metabolismo , Humanos , Microtúbulos/química , Modelos Moleculares , Proteínas Nucleares/química , Proteínas Nucleares/genética , Unión Proteica , Multimerización de Proteína , Estructura Terciaria de Proteína , Proteínas Recombinantes de Fusión/química , Proteínas Recombinantes de Fusión/genética , Proteínas Recombinantes de Fusión/metabolismo , Schizosaccharomyces/citología , Schizosaccharomyces/metabolismo , Proteínas de Schizosaccharomyces pombe/química , Proteínas de Schizosaccharomyces pombe/genética
20.
Cell ; 132(1): 79-88, 2008 Jan 11.
Artículo en Inglés | MEDLINE | ID: mdl-18191222

RESUMEN

Fast growth of microtubules is essential for rapid assembly of the microtubule cytoskeleton during cell proliferation and differentiation. XMAP215 belongs to a conserved family of proteins that promote microtubule growth. To determine how XMAP215 accelerates growth, we developed a single-molecule assay to visualize directly XMAP215-GFP interacting with dynamic microtubules. XMAP215 binds free tubulin in a 1:1 complex that interacts with the microtubule lattice and targets the ends by a diffusion-facilitated mechanism. XMAP215 persists at the plus end for many rounds of tubulin subunit addition in a form of "tip tracking." These results show that XMAP215 is a processive polymerase that directly catalyzes the addition of up to 25 tubulin dimers to the growing plus end. Under some circumstances XMAP215 can also catalyze the reverse reaction, namely microtubule shrinkage. The similarities between XMAP215 and formins, actin polymerases, suggest that processive tip tracking is a common mechanism for stimulating the growth of cytoskeletal polymers.


Asunto(s)
Proteínas Asociadas a Microtúbulos/metabolismo , Microtúbulos/metabolismo , Tubulina (Proteína)/metabolismo , Proteínas de Xenopus/metabolismo , Animales , Sitios de Unión/fisiología , Bioensayo/métodos , Dominio Catalítico/fisiología , Diferenciación Celular/fisiología , Aumento de la Célula , Línea Celular , Citoesqueleto/metabolismo , Citoesqueleto/ultraestructura , Difusión , Dimerización , Proteínas Fetales/metabolismo , Forminas , Proteínas Fluorescentes Verdes/metabolismo , Proteínas de Microfilamentos/metabolismo , Microscopía Fluorescente , Proteínas Asociadas a Microtúbulos/genética , Microtúbulos/ultraestructura , Proteínas Nucleares/metabolismo , Polímeros/metabolismo , Unión Proteica/fisiología , Estructura Terciaria de Proteína/fisiología , Transporte de Proteínas/fisiología , Spodoptera , Sus scrofa , Proteínas de Xenopus/genética , Xenopus laevis
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...