Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Más filtros













Base de datos
Intervalo de año de publicación
1.
Chem Rec ; 24(1): e202300105, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-37222655

RESUMEN

Polyaniline (PANI) has piqued the interest of nanotechnology researchers due to its potential as an electrode material for supercapacitors. Despite its ease of synthesis and ability to be doped with a wide range of materials, PANI's poor mechanical properties have limited its use in practical applications. To address this issue, researchers investigated using PANI composites with materials with highly specific surface areas, active sites, porous architectures, and high conductivity. The resulting composite materials have improved energy storage performance, making them promising electrode materials for supercapacitors. Here, we provide an overview of recent developments in PANI-based supercapacitors, focusing on using electrochemically active carbon and redox-active materials as composites. We discuss challenges and opportunities of synthesizing PANI-based composites for supercapacitor applications. Furthermore, we provide theoretical insights into the electrical properties of PANI composites and their potential as active electrode materials. The need for this review stems from the growing interest in PANI-based composites to improve supercapacitor performance. By examining recent progress in this field, we provide a comprehensive overview of the current state-of-the-art and potential of PANI-based composites for supercapacitor applications. This review adds value by highlighting challenges and opportunities associated with synthesizing and utilizing PANI-based composites, thereby guiding future research directions.

2.
Chem Asian J ; 18(17): e202300481, 2023 Sep 01.
Artículo en Inglés | MEDLINE | ID: mdl-37455604

RESUMEN

CO2 capture is a practical approach to mitigating the impacts of global warming. Adsorption-based carbon capture is a clean and potentially energy-efficient method whose performance greatly depends on adsorbent design. In this study, we explored the use of jute-derived carbon as a high-performance adsorbent for CO2 capture. The carbons were produced by pyrolyzing powdered jute sticks with NaHCO3 as an activating agent at 500-700 °C. Impressive adsorption capacities of up to 2.5 mmol ⋅ g-1 and CO2 /N2 selectivities of up to 54 were achieved by adjusting the pore size distribution and surface functionalization. Based on the isotherm results, the working capacities, regenerabilities, and potentials for CO2 separation were determined for a practical vacuum swing adsorption process. The adsorbent materials were characterized by XRD, FTIR, Raman, FESEM and N2 sorption at 77 K. This study provides a general approach for designing adsorbents for various gas-separation applications.

3.
Chem Asian J ; 18(4): e202201223, 2023 Feb 14.
Artículo en Inglés | MEDLINE | ID: mdl-36576425

RESUMEN

Energy storage is one of the most stimulating requirements to keep civilization on the wheel of progress. Supercapacitors generally exhibit a high-power density, have a maximum life cycle, quick charging time, and are eco-friendly. Polyaniline (PANI), a conductive polymer, is considered an efficacious electrode material for supercapacitors due to its good electroactivity, including pseudocapacitive behavior. Here, we present the fabrication of a symmetric supercapacitor device based on steel mesh electrodeposited with PANI. Due to its effective conductivity, porous nature, and low cost, steel mesh is a good choice as a current collector to fabricate a high-performance supercapacitor at a low cost. The optimum fabricated supercapacitor has a high specific capacitance of ∼353 mF cm-2 . Furthermore, the supercapacitor obtained an energy density of ∼26.4 µW h cm-2 at a power density of ∼400 µW cm-2 . The fabricated supercapacitor shows high stability, as the initial capacitance remained almost the same after 1000 charge/discharge cycles. PANI is a promising candidate for mass production and wide applications due to its low cost and high performance.

4.
Chem Asian J ; 16(12): 1570-1583, 2021 Jun 14.
Artículo en Inglés | MEDLINE | ID: mdl-33894052

RESUMEN

There is an overwhelming desire to develop new sulfide oxidation electrocatalysts that perform at low potentials and exhibit high current density for the removal and efficient sensing of sulfide. This article describes a comparative electrochemical analysis of various commercially available carbon materials and polymer/surfactant composite electrocatalysts for direct electrooxidation of sulfide in an aqueous solution. The composites were prepared from five different carbon materials multiwalled carbon nanotubes, fullerene-C60 , graphene, glassy carbon, and carbon nanofibers (CNF) and four different polymers: chitosan, polyvinylidene fluoride, Nafion, and indigenously synthesized poly[2-(methacryloyloxy)ethyl] trimethylammonium chloride (PMTC). The carbon@polymer composites were prepared by a simple ultrasonication technique, and the electrodes were prepared by drop-drying the prepared composite on indium tin oxide (ITO) substrates. The CNF@PMTC showed the highest positive zeta potential that allowed an accumulation of many negatively charged sulfide ions at the CNF@PMTC surface. Cyclic voltammetry was used for the electrooxidation of sulfide in an aqueous solution of tris buffer (0.05 M; pH 8.0) and KNO3 (0.1 M). The lowest sulfide oxidation peak potential (i. e., -51 mV vs. standard hydrogen electrode) with a high catalytic current response (730 µA/cm2 ) of the CNF@PMTC-modified ITO electrode among the tested and previously reported carbon-based electrode materials make it ideal for direct sulfide electrooxidation. Taking this and its simple preparation method into account, CNF@PMTC can be considered a benchmark carbon-based electrocatalyst for sulfide oxidation.

5.
Chem Rec ; 21(1): 204-238, 2021 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-33200874

RESUMEN

Due to their potential applications in industry and potent toxicity to the environment, sulfides and their detection have attracted the attention of researchers. To date, a large number of controlled-potential techniques for electrochemical sulfide sensors have been developed, thanks to their simplicity, reasonable limit of detection (LOD), and good selectivity. Different researchers have applied different strategies for developing selective and sensitive sulfide sensors. However, there has been no systematic review on controlled-potential techniques for sulfide sensing. In light of this absence, the main aim of this review article is to summarize various strategies for detecting sulfide in different media. The efficiencies of the developed sulfide sensors for detecting sulfide in its various forms are determined, and the essential parameters, including sensing strategies, working electrodes, detection media, pH, LOD, sensitivity, and linear detection range, are emphasized in particular. Future research in this area is also recommended. It is expected that this review will act as a basis for further research on the fabrication of sulfide sensors for practical applications.

6.
Chem Asian J ; 15(24): 4358-4367, 2020 Dec 14.
Artículo en Inglés | MEDLINE | ID: mdl-33191635

RESUMEN

Nano-Co3 O4 was used for electrocatalytic water oxidation due to its promising features of better performance and low cost. An enhanced electrochemical water oxidation performance of the nanoparticles can be achieved by mixing them with other types of highly conductive nano/micro-structured materials. Conductive polymers would be one of the candidates to achieve this goal. Here, we report our recently developed nano-Co3 O4 and polypyrrole composites for enhanced electrochemical water oxidation. We chose polypyrrole as a support of nano-Co3 O4 to obtain highly active sites of nano-Co3 O4 with high conductivity. Morphological and chemical characterization of the prepared materials were performed using scanning electron microscopy (SEM), energy-dispersive spectroscopy (EDS), and X-ray photoelectron spectroscopy (XPS). After immobilizing them individually on fluorine doped tin oxide (FTO) substrate, their electrocatalytic properties toward water oxidation were investigated. The optimum composite materials showed significantly higher electrocatalytic properties compared to that of pure nano-Co3 O4 and polypyrrole. Electrochemical impedance studies indicated that the composite materials possess significantly less electron transfer resistance toward water oxidation reaction compared to that of only polypyrrole or nano-Co3 O4 , while the higher double-layer capacitance and polarization resistance values obtained from fitting of the impedance data represent the faster electrode kinetics in the composite electrocatalyst. Due to the synergetic effect, the optimum nano-Co3 O4 and polypyrrole composites could be represent a novel and promising material for water oxidation.

7.
J Fluoresc ; 15(5): 689-96, 2005 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-16341786

RESUMEN

The proton-transfer reaction of 1,8-diaminonaphthalene (1,8-DAN) in acidic medium was studied by means of fluorescence and picosecond spectroscopic techniques. It has been found that there are three different forms of 1,8-DAN in the ground state, but only two different forms in the excited state. The absorption of the mono-cation form of 1,8-DAN is found to be a mixture of the neutral form and the di-cation form. However, the emission is found to be the same as the neutral form, due to the fast dissociation of the mono-cation form once it is excited. The fluorescence of the mono-cation form of 1,8-DAN shows a small shift under different excitation wavelengths. The di-cation form only fluoresces if no free water cluster is available as a proton acceptor. The reaction in the excited state is shown to be a diabatic quenching reaction. With the help of quantum yields and fluorescence lifetime measurements these results are interpreted in terms of a new photochemical scheme. All dissociation and quenching rate constants, pKa and kq, have been determined.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA