Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 45
Filtrar
1.
Front Immunol ; 13: 1000861, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36483552

RESUMEN

Unlike other Flaviviruses, Zika virus (ZIKV) infection during the first trimester of pregnancy causes severe pregnancy outcomes including the devastating microcephaly and diseases associated with placental dysfunctions. We have previously reported that the maternal decidua basalis, the major maternal-fetal interface, serves as a replication platform enabling virus amplification before dissemination to the fetal compartment. However, the rate of congenital infection is quite low, suggesting the presence of a natural barrier against viral infection. Using primary cells from first-trimester pregnancy samples, we investigated in this study how the maternal decidua can interfere with ZIKV infection. Our study reveals that whether through their interactions with dNK cells, the main immune cell population of the first-trimester decidua, or their production of proinflammatory cytokines, decidual stromal cells (DSCs) are the main regulators of ZIKV infection during pregnancy. We also validate the functional role of AXL as a crucial receptor for ZIKV entry in DSCs and demonstrate that targeted inhibition of ligand-receptor interaction at the early stage of the infection is effective in drastically reducing virus pathogenesis at the maternal-fetal interface. Collectively, our results provide insights into the mechanisms through which ZIKV infection and spreading can be limited. The strategy of circumventing viral entry at the maternal-fetus interface limits virus dissemination to fetal tissues, thereby preventing congenital abnormalities.


Asunto(s)
Infección por el Virus Zika , Virus Zika , Embarazo , Femenino , Humanos , Placenta
2.
Trials ; 22(1): 795, 2021 Nov 12.
Artículo en Inglés | MEDLINE | ID: mdl-34772433

RESUMEN

BACKGROUND: Primary prevention trials have demonstrated that the traditional Mediterranean diet is associated with a reduction in cardiovascular mortality and morbidity. However, this benefit has not been proven for secondary prevention after an acute coronary syndrome (ACS). We hypothesized that a high-intensity Mediterranean diet intervention after an ACS decreases the vulnerability of atherosclerotic plaques by complex interactions between anti-inflammatory effects, microbiota changes and modulation of gene expression. METHODS: The MEDIMACS project is an academically funded, prospective, randomized, controlled and mechanistic clinical trial designed to address the effects of an active randomized intervention with the Mediterranean diet on atherosclerotic plaque vulnerability, coronary endothelial dysfunction and other mechanistic endpoints. One hundred patients with ACS are randomized 1:1 to a monitored high-intensity Mediterranean diet intervention or to a standard-of-care arm. Adherence to diet is assessed in both arms using food frequency questionnaires and biomarkers of compliance. The primary endpoint is the change (from baseline to 12 months) in the thickness of the fibrous cap of a non-significant atherosclerotic plaque in a non-culprit vessel, as assessed by repeated optical coherence tomography intracoronary imaging. Indices of coronary vascular physiology and changes in gastrointestinal microbiota, immunological status and protein and metabolite profiles will be evaluated as secondary endpoints. DISCUSSION: The results of this trial will address the key effects of dietary habits on atherosclerotic risk and will provide initial data on the complex interplay of immunological, microbiome-, proteome- and metabolome-related mechanisms by which non-pharmacological factors may impact the progression of coronary atherosclerosis after an ACS. TRIAL REGISTRATION: ClinicalTrials.gov NCT03842319 . Registered on 13 May 2019.


Asunto(s)
Síndrome Coronario Agudo , Dieta Mediterránea , Microbioma Gastrointestinal , Placa Aterosclerótica , Síndrome Coronario Agudo/diagnóstico por imagen , Síndrome Coronario Agudo/prevención & control , Humanos , Inflamación/diagnóstico , Inflamación/prevención & control , Estudios Prospectivos , Ensayos Clínicos Controlados Aleatorios como Asunto , Tomografía de Coherencia Óptica
3.
Front Med (Lausanne) ; 8: 674645, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34368184

RESUMEN

The placenta, the first and largest organ to develop after conception, not only nurtures and promotes the development of the conceptus, but, it also functions as a barrier against invading pathogens. Early phases of pregnancy are associated with expansion of specific subsets of Natural Killer cells (dNK) and macrophages (dMφ) at the maternal uterine mucosa, the basal decidua. In concert with cells of fetal origin, dNK cells, and dMφ orchestrate all steps of placenta and fetus development, and provide the first line of defense to limit vertical transmission. However, some pathogens that infect the mother can overcome this protective barrier and jeopardize the fetus health. In this review, we will discuss how members of the classical TORCH family (Toxoplasma, Other, Rubella, Cytomegalovirus, and Herpes simplex virus) and some emerging viruses (Hepatitis E virus, Zika virus, and SARS-CoV2) can afford access to the placental fortress. We will also discuss how changes in the intrauterine environment as a consequence of maternal immune cell activation contribute to placental diseases and devastating pregnancy outcomes.

4.
Int J Mol Sci ; 22(6)2021 Mar 19.
Artículo en Inglés | MEDLINE | ID: mdl-33808520

RESUMEN

Endosome-derived small extracellular vesicles (EVs), often referred to as exosomes, are produced by almost all, if not all, cell types, and are critical for intercellular communication. They are composed of a lipid bilayer associated with membrane proteins and contain a payload of lipids, proteins and regulatory RNAs that depends on the parental cell physiological condition. By transferring their "cargo", exosomes can modulate the phenotype of neighboring and distant cells. Stem cells (SC) were widely studied for therapeutic applications regarding their regenerative/reparative potential as well as their immunomodulatory properties. Whether from autologous or allogeneic source, SC beneficial effects in terms of repair and regeneration are largely attributed to their paracrine signaling notably through secreted EVs. Subsequently, SC-derived EVs have been investigated for the treatment of various diseases, including inflammatory skin disorders, and are today fast-track cell-free tools for regenerative/reparative strategies. Yet, their clinical application is still facing considerable challenges, including production and isolation procedures, and optimal cell source. Within the emerging concept of "allogeneic-driven benefit" for SC-based therapies, the use of EVs from allogeneic sources becomes the pragmatic choice although a universal allogeneic cell source is still needed. As a unique temporary organ that ensures the mutual coexistence of two allogeneic organisms, mother and fetus, the human placenta offers a persuasive allogeneic stem cell source for development of therapeutic EVs. Advancing cell-free therapeutics nurtures great hope and provides new perspectives for the development of safe and effective treatment in regenerative/reparative medicine and beyond. We will outline the current state of the art in regard of EVs, summarize their therapeutic potential in the context of skin inflammatory disorders, and discuss their translational advantages and hurdles.


Asunto(s)
Vesículas Extracelulares/metabolismo , Medicina Regenerativa/métodos , Células Madre/metabolismo , Nanomedicina Teranóstica/métodos , Transporte Biológico , Enfermedad Crónica , Dermatitis/etiología , Dermatitis/terapia , Exosomas/metabolismo , Vesículas Extracelulares/inmunología , Humanos , Inmunomodulación , Cicatrización de Heridas
5.
Cardiovasc Res ; 117(1): 292-307, 2021 01 01.
Artículo en Inglés | MEDLINE | ID: mdl-32049348

RESUMEN

AIMS: The cardioprotective effects of human induced pluripotent stem cell-derived cardiovascular progenitor cells (CPC) are largely mediated by the paracrine release of extracellular vesicles (EV). We aimed to assess the immunological behaviour of EV-CPC, which is a prerequisite for their clinical translation. METHODS AND RESULTS: Flow cytometry demonstrated that EV-CPC expressed very low levels of immune relevant molecules including HLA Class I, CD80, CD274 (PD-L1), and CD275 (ICOS-L); and moderate levels of ligands of the natural killer (NK) cell activating receptor, NKG2D. In mixed lymphocyte reactions, EV-CPC neither induced nor modulated adaptive allogeneic T cell immune responses. They also failed to induce NK cell degranulation, even at high concentrations. These in vitro effects were confirmed in vivo as repeated injections of EV-CPC did not stimulate production of immunoglobulins or affect the interferon (IFN)-γ responses from primed splenocytes. In a mouse model of chronic heart failure, intra-myocardial injections of EV-CPC, 3 weeks after myocardial infarction, decreased both the number of cardiac pro-inflammatory Ly6Chigh monocytes and circulating levels of pro-inflammatory cytokines (IL-1α, TNF-α, and IFN-γ). In a model of acute infarction, direct cardiac injection of EV-CPC 2 days after infarction reduced pro-inflammatory macrophages, Ly6Chigh monocytes, and neutrophils in heart tissue as compared to controls. EV-CPC also reduced levels of pro-inflammatory cytokines IL-1α, IL-2, and IL-6, and increased levels of the anti-inflammatory cytokine IL-10. These effects on human macrophages and monocytes were reproduced in vitro; EV-CPC reduced the number of pro-inflammatory monocytes and M1 macrophages, while increasing the number of anti-inflammatory M2 macrophages. CONCLUSIONS: EV-CPC do not trigger an immune response either in in vitro human allogeneic models or in immunocompetent animal models. The capacity for orienting the response of monocyte/macrophages towards resolution of inflammation strengthens the clinical attractiveness of EV-CPC as an acellular therapy for cardiac repair.


Asunto(s)
Proliferación Celular , Vesículas Extracelulares/trasplante , Insuficiencia Cardíaca/cirugía , Células Madre Pluripotentes Inducidas/trasplante , Infarto del Miocardio/cirugía , Miocardio/inmunología , Miocitos Cardíacos/trasplante , Regeneración , Animales , Línea Celular , Técnicas de Cocultivo , Citocinas/metabolismo , Modelos Animales de Enfermedad , Vesículas Extracelulares/inmunología , Vesículas Extracelulares/metabolismo , Insuficiencia Cardíaca/inmunología , Insuficiencia Cardíaca/metabolismo , Insuficiencia Cardíaca/fisiopatología , Humanos , Células Madre Pluripotentes Inducidas/inmunología , Células Madre Pluripotentes Inducidas/metabolismo , Mediadores de Inflamación/metabolismo , Macrófagos/inmunología , Macrófagos/metabolismo , Masculino , Ratones Endogámicos C57BL , Monocitos/inmunología , Monocitos/metabolismo , Infarto del Miocardio/inmunología , Infarto del Miocardio/metabolismo , Infarto del Miocardio/fisiopatología , Miocardio/metabolismo , Miocardio/patología , Miocitos Cardíacos/inmunología , Miocitos Cardíacos/metabolismo , Neutrófilos/inmunología , Neutrófilos/metabolismo , Fenotipo , Ratas
6.
Nat Commun ; 11(1): 2967, 2020 06 11.
Artículo en Inglés | MEDLINE | ID: mdl-32528049

RESUMEN

The recent outbreak of Zika virus (ZIKV) was associated with birth defects and pregnancy loss when maternal infection occurs in early pregnancy, but specific mechanisms driving placental insufficiency and subsequent ZIKV-mediated pathogenesis remain unclear. Here we show, using large scale metabolomics, that ZIKV infection reprograms placental lipidome by impairing the lipogenesis pathways. ZIKV-induced metabolic alterations provide building blocks for lipid droplet biogenesis and intracellular membrane rearrangements to support viral replication. Furthermore, lipidome reprogramming by ZIKV is paralleled by the mitochondrial dysfunction and inflammatory immune imbalance, which contribute to placental damage. In addition, we demonstrate the efficacy of a commercially available inhibitor in limiting ZIKV infection, provides a proof-of-concept for blocking congenital infection by targeting metabolic pathways. Collectively, our study provides mechanistic insights on how ZIKV targets essential hubs of the lipid metabolism that may lead to placental dysfunction and loss of barrier function.


Asunto(s)
Placenta/virología , Infección por el Virus Zika/inmunología , Infección por el Virus Zika/metabolismo , Femenino , Humanos , Transmisión Vertical de Enfermedad Infecciosa , Lipidómica/métodos , Embarazo , Complicaciones Infecciosas del Embarazo/inmunología , Complicaciones Infecciosas del Embarazo/metabolismo , Virus Zika/inmunología , Virus Zika/patogenicidad
7.
Cell Death Dis ; 10(5): 357, 2019 05 01.
Artículo en Inglés | MEDLINE | ID: mdl-31043590

RESUMEN

Growing evidence indicates that cell adhesion to extracellular matrix (ECM) plays an important role in cancer chemoresistance. Leukemic T cells express several adhesion receptors of the ß1 integrin subfamily with which they interact with ECM. However, the role of ß1 integrins in chemoresistance of T-cell acute lymphoblastic leukemia (T-ALL) is still ill defined. In this study, we demonstrate that interactions of human T-ALL cell lines and primary blasts with three-dimensional matrices including Matrigel and collagen type I gel promote their resistance to doxorubicin via ß1 integrin. The blockade of ß1 integrin with a specific neutralizing antibody sensitized xenografted CEM leukemic cells to doxorubicin, diminished the leukemic burden in the bone marrow and resulted in the extension of animal survival. Mechanistically, Matrigel/ß1 integrin interaction enhanced T-ALL chemoresistance by promoting doxorubicin efflux through the activation of the ABCC1 drug transporter. Finally, our findings showed that Matrigel/ß1 interaction enhanced doxorubicin efflux and chemoresistance by activating the FAK-related proline-rich tyrosine kinase 2 (PYK2) as both PYK2 inhibitor and siRNA diminished the effect of Matrigel. Collectively, these results support the role of ß1 integrin in T-ALL chemoresistance and suggest that the ß1 integrin pathway can constitute a therapeutic target to avoid chemoresistance and relapsed-disease in human T-ALL.


Asunto(s)
Antibióticos Antineoplásicos/farmacología , Doxorrubicina/farmacología , Quinasa 2 de Adhesión Focal/genética , Regulación Leucémica de la Expresión Génica , Integrina beta1/genética , Leucemia-Linfoma Linfoblástico de Células T Precursoras/genética , Animales , Anticuerpos Neutralizantes/farmacología , Apoptosis/efectos de los fármacos , Adhesión Celular/efectos de los fármacos , Línea Celular Tumoral , Colágeno/química , Colágeno/metabolismo , Colágeno Tipo I/química , Colágeno Tipo I/metabolismo , Combinación de Medicamentos , Resistencia a Antineoplásicos/genética , Matriz Extracelular/química , Matriz Extracelular/metabolismo , Quinasa 2 de Adhesión Focal/antagonistas & inhibidores , Quinasa 2 de Adhesión Focal/metabolismo , Humanos , Integrina beta1/metabolismo , Células Jurkat , Laminina/química , Laminina/metabolismo , Ratones Desnudos , Leucemia-Linfoma Linfoblástico de Células T Precursoras/tratamiento farmacológico , Leucemia-Linfoma Linfoblástico de Células T Precursoras/mortalidad , Leucemia-Linfoma Linfoblástico de Células T Precursoras/patología , Cultivo Primario de Células , Proteoglicanos/química , Proteoglicanos/metabolismo , ARN Interferente Pequeño/genética , ARN Interferente Pequeño/metabolismo , Transducción de Señal , Análisis de Supervivencia , Linfocitos T/efectos de los fármacos , Linfocitos T/metabolismo , Linfocitos T/patología , Ensayos Antitumor por Modelo de Xenoinjerto
8.
Stem Cells Transl Med ; 8(9): 911-924, 2019 09.
Artículo en Inglés | MEDLINE | ID: mdl-30924311

RESUMEN

The positive effects of therapeutic human allogeneic cardiac stem/progenitor cells (hCPC) in terms of cardiac repair/regeneration are very likely mediated by paracrine effects. Our previous studies revealed the advantageous immune interactions of allogeneic hCPC and proposed them as part of the positive paracrine effects occurring upon their application postmyocardial infarction (MI). Currently, extracellular vesicles/exosomes (EV/Exs) released by stem/progenitor cells are also proposed as major mediators of paracrine effects of therapeutic cells. Along this line, we evaluated contribution of EV/Exs released by therapeutic hCPC to the benefit of their successful allogeneic clinical application. Through tailored allogeneic in vitro human assay models mimicking the clinical setting, we demonstrate that hCPC-released EV/Exs were rapidly and efficiently up-taken by chief cellular actors of cardiac repair/regeneration. This promoted MAPK/Erk1/2 activation, migration, and proliferation of human leukocyte antigens (HLA)-mismatched hCPC, mimicking endogenous progenitor cells and cardiomyocytes, and enhanced endothelial cell migration, growth, and organization into tube-like structures through activation of several signaling pathways. EV/Exs also acted as pro-survival stimuli for HLA-mismatched monocytes tuning their phenotype toward an intermediate anti-inflammatory pro-angiogenic phenotype. Thus, while positively impacting the intrinsic regenerative and angiogenic programs, EV/Exs released by therapeutic allogeneic hCPC can also actively contribute to shaping MI-inflammatory environment, which could strengthen the benefits of hCPC allogeneic interactions. Collectively, our data might forecast the application of allogeneic hCPC followed by their cell-free EV/Exs as a strategy that will not only elicit the cell-contact mediated reparative/regenerative immune response but also have the desired long-lasting effects through the EV/Exs. Stem Cells Translational Medicine 2019;8:911&924.


Asunto(s)
Vesículas Extracelulares/metabolismo , Células Madre/metabolismo , Butadienos/farmacología , Movimiento Celular/efectos de los fármacos , Proliferación Celular/efectos de los fármacos , Células Endoteliales/citología , Células Endoteliales/metabolismo , Vesículas Extracelulares/trasplante , Antígenos HLA/metabolismo , Humanos , Proteína Quinasa 1 Activada por Mitógenos/antagonistas & inhibidores , Proteína Quinasa 1 Activada por Mitógenos/metabolismo , Proteína Quinasa 3 Activada por Mitógenos/antagonistas & inhibidores , Proteína Quinasa 3 Activada por Mitógenos/metabolismo , Modelos Biológicos , Monocitos/citología , Monocitos/metabolismo , Infarto del Miocardio/patología , Infarto del Miocardio/terapia , Miocitos Cardíacos/citología , Nitrilos/farmacología , Transducción de Señal , Células Madre/citología , Trasplante Homólogo
9.
Nat Commun ; 9(1): 4748, 2018 11 12.
Artículo en Inglés | MEDLINE | ID: mdl-30420629

RESUMEN

Hepatitis E virus (HEV) infection, particularly HEV genotype 1 (HEV-1), can result in fulminant hepatic failure and severe placental diseases, but mechanisms underlying genotype-specific pathogenicity are unclear and appropriate models are lacking. Here, we model HEV-1 infection ex vivo at the maternal-fetal interface using the decidua basalis and fetal placenta, and compare its effects to the less-pathogenic genotype 3 (HEV-3). We demonstrate that HEV-1 replicates more efficiently than HEV-3 both in tissue explants and stromal cells, produces more infectious progeny virions and causes severe tissue alterations. HEV-1 infection dysregulates the secretion of several soluble factors. These alterations to the cytokine microenvironment correlate with viral load and contribute to the tissue damage. Collectively, this study characterizes an ex vivo model for HEV infection and provides insights into HEV-1 pathogenesis during pregnancy that are linked to high viral replication, alteration of the local secretome and induction of tissue injuries.


Asunto(s)
Virus de la Hepatitis E/genética , Virus de la Hepatitis E/patogenicidad , Intercambio Materno-Fetal/fisiología , Células Cultivadas , Decidua/patología , Decidua/virología , Femenino , Genotipo , Humanos , Interferones/metabolismo , Embarazo , Células del Estroma/metabolismo , Replicación Viral , Interferón lambda
10.
Med Hypotheses ; 117: 7-15, 2018 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-30077201

RESUMEN

All traumas suppress the immune system, resulting in higher morbidity and mortality. Infections, poor nutritional status, chronic illness, fatigue, therapies or procedures performed during and after transport also negatively affect the immune system. Large populations are impacted by trauma worldwide and suffer enormous costs in both direct and indirect expenditures from physical, psychological and functional losses. Most therapies and studies of trauma, brain trauma, stroke, immune suppression and their co-morbidities do not address nor discuss methods that promote immune system resuscitation or efficacy to support its role in post-trauma healing and rehabilitation. These omissions present an opportunity for using autologous stored naïve (unexposed to the current trauma and co-morbidities) white blood cell infusions (autologous white blood cell infusion) (AWBCI) to supplement treatment of most traumas, trauma-associated infections, other co-morbidities and immune suppression derived problems in order to improve the global standard of trauma care. We hypothesize to give the traumatized patients back their own immune system that has been 'stored' in some fashion, either cryogenically or just after or during the trauma event [surgery, etc for example]. We emphasize that other treatments should not be replaced - rather we suggest AWBCI as concurrent therapy. We present focused select animal and human studies as proofs of concept to arrive at and support our therapeutic suggestion and hypotheses, flowing historically from donor white blood cell therapy [DLI] to close cohort white blood cell therapy to autologous white blood cell infusion [AWBCI]. We integrate the concept of personalized medicine from an evidence-based framework while maintaining scientific rigor and statistical proof as a basis of our hypotheses.


Asunto(s)
Lesiones Encefálicas/terapia , Enfermedades del Sistema Inmune/terapia , Leucocitos/citología , Accidente Cerebrovascular/terapia , Heridas y Lesiones/terapia , Animales , Lesiones Encefálicas/complicaciones , Lesiones Encefálicas/inmunología , Comorbilidad , Humanos , Enfermedades del Sistema Inmune/complicaciones , Enfermedades del Sistema Inmune/inmunología , Ratones , Modelos Teóricos , Trastornos por Estrés Postraumático/inmunología , Accidente Cerebrovascular/complicaciones , Accidente Cerebrovascular/inmunología , Heridas y Lesiones/complicaciones , Heridas y Lesiones/inmunología
11.
Circ Res ; 123(5): 579-589, 2018 08 17.
Artículo en Inglés | MEDLINE | ID: mdl-29921651

RESUMEN

RATIONALE: Allogeneic cardiac stem cells (AlloCSC-01) have shown protective, immunoregulatory, and regenerative properties with a robust safety profile in large animal models of heart disease. OBJECTIVE: To investigate the safety and feasibility of early administration of AlloCSC-01 in patients with ST-segment-elevation myocardial infarction. METHODS AND RESULTS: CAREMI (Safety and Efficacy of Intracoronary Infusion of Allogeneic Human Cardiac Stem Cells in Patients With STEMI and Left Ventricular Dysfunction) was a phase I/II multicenter, randomized, double-blind, placebo-controlled trial in patients with ST-segment-elevation myocardial infarction, left ventricular ejection fraction ≤45%, and infarct size ≥25% of left ventricular mass by cardiac magnetic resonance, who were randomized (2:1) to receive AlloCSC-01 or placebo through the intracoronary route at days 5 to 7. The primary end point was safety and included all-cause death and major adverse cardiac events at 30 days (all-cause death, reinfarction, hospitalization because of heart failure, sustained ventricular tachycardia, ventricular fibrillation, and stroke). Secondary safety end points included major adverse cardiac events at 6 and 12 months, adverse events, and immunologic surveillance. Secondary exploratory efficacy end points were changes in infarct size (percentage of left ventricular mass) and indices of ventricular remodeling by magnetic resonance at 12 months. Forty-nine patients were included (92% male, 55±11 years), 33 randomized to AlloCSC-01 and 16 to placebo. No deaths or major adverse cardiac events were reported at 12 months. One severe adverse events in each group was considered possibly related to study treatment (allergic dermatitis and rash). AlloCSC-01 elicited low levels of donor-specific antibodies in 2 patients. No immune-related adverse events were found, and no differences between groups were observed in magnetic resonance-based efficacy parameters at 12 months. The estimated treatment effect of AlloCSC-01 on the absolute change from baseline in infarct size was -2.3% (95% confidence interval, -6.5% to 1.9%). CONCLUSIONS: AlloCSC-01 can be safely administered in ST-segment-elevation myocardial infarction patients with left ventricular dysfunction early after revascularization. Low immunogenicity and absence of immune-mediated events will facilitate adequately powered studies to demonstrate their clinical efficacy in this setting. CLINICAL TRIAL REGISTRATION: URL: http://www.clinicaltrials.gov . Unique identifier: NCT02439398.


Asunto(s)
Mioblastos Cardíacos/trasplante , Infarto del Miocardio/terapia , Trasplante de Células Madre/métodos , Disfunción Ventricular Izquierda/terapia , Anciano , Femenino , Humanos , Infusiones Intraarteriales , Masculino , Persona de Mediana Edad , Mioblastos Cardíacos/citología , Infarto del Miocardio/complicaciones , Trasplante de Células Madre/efectos adversos , Trasplante Homólogo , Disfunción Ventricular Izquierda/complicaciones
12.
J Am Coll Cardiol ; 71(4): 429-438, 2018 01 30.
Artículo en Inglés | MEDLINE | ID: mdl-29389360

RESUMEN

BACKGROUND: In addition to scalability, human embryonic stem cells (hESCs) have the unique advantage of allowing their directed differentiation toward lineage-specific cells. OBJECTIVES: This study tested the feasibility of leveraging the properties of hESCs to generate clinical-grade cardiovascular progenitor cells and assessed their safety in patients with severe ischemic left ventricular dysfunction. METHODS: Six patients (median age 66.5 years [interquartile range (IQR): 60.5 to 74.7 years]; median left ventricular ejection fraction 26% [IQR: 22% to 32%]) received a median dose of 8.2 million (IQR: 5 to 10 million) hESC-derived cardiovascular progenitors embedded in a fibrin patch that was epicardially delivered during a coronary artery bypass procedure. The primary endpoint was safety at 1 year and focused on: 1) cardiac or off-target tumor, assessed by imaging (computed tomography and fluorine-18 fluorodeoxyglucose positron emission tomography scans); 2) arrhythmias, detected by serial interrogations of the cardioverter-defibrillators implanted in all patients; and 3) alloimmunization, assessed by the presence of donor-specific antibodies. Patients were followed up for a median of 18 months. RESULTS: The protocol generated a highly purified (median 97.5% [IQR: 95.5% to 98.7%]) population of cardiovascular progenitors. One patient died early post-operatively from treatment-unrelated comorbidities. All others had uneventful recoveries. No tumor was detected during follow-up, and none of the patients presented with arrhythmias. Three patients developed clinically silent alloimmunization. All patients were symptomatically improved with an increased systolic motion of the cell-treated segments. One patient died of heart failure after 22 months. CONCLUSIONS: This trial demonstrates the technical feasibility of producing clinical-grade hESC-derived cardiovascular progenitors and supports their short- and medium-term safety, thereby setting the grounds for adequately powered efficacy studies. (Transplantation of Human Embryonic Stem Cell-derived Progenitors in Severe Heart Failure [ESCORT]; NCT02057900).


Asunto(s)
Puente de Arteria Coronaria , Células Madre Embrionarias Humanas/trasplante , Isquemia Miocárdica/terapia , Trasplante de Células Madre/métodos , Disfunción Ventricular Izquierda/terapia , Anciano , Estudios de Cohortes , Estudios de Factibilidad , Femenino , Humanos , Masculino , Persona de Mediana Edad , Isquemia Miocárdica/complicaciones , Isquemia Miocárdica/mortalidad , Tasa de Supervivencia , Resultado del Tratamiento , Disfunción Ventricular Izquierda/complicaciones , Disfunción Ventricular Izquierda/mortalidad
14.
Front Immunol ; 8: 1413, 2017.
Artículo en Inglés | MEDLINE | ID: mdl-29123530

RESUMEN

Cardiac repair following MI relies on a finely regulated immune response involving sequential recruitment of monocytes to the injured tissue. Monocyte-derived cells are also critical for tissue homeostasis and healing process. Our previous findings demonstrated the interaction of T and natural killer cells with allogeneic human cardiac-derived stem/progenitor cells (hCPC) and suggested their beneficial effect in the context of cardiac repair. Therefore, we investigated here whether monocytes and their descendants could be also modulated by allogeneic hCPC toward a repair/anti-inflammatory phenotype. Through experimental in vitro assays, we assessed the impact of allogeneic hCPC on the recruitment, functions and differentiation of monocytes. We found that allogeneic hCPC at steady state or under inflammatory conditions can incite CCL-2/CCR2-dependent recruitment of circulating CD14+CD16- monocytes and fine-tune their activation toward an anti-inflammatory profile. Allogeneic hCPC also promoted CD14+CD16- monocyte polarization into anti-inflammatory/immune-regulatory macrophages with high phagocytic capacity and IL10 secretion. Moreover, hCPC bended the differentiation of CD14+CD16- monocytes to dendritic cells (DCs) toward anti-inflammatory macrophage-like features and impaired their antigen-presenting function in favor of immune-modulation. Collectively, our results demonstrate that allogeneic hCPC could reshape monocytes, macrophages as well as DCs responses by favoring their anti-inflammatory/tolerogenic activation/polarization. Thereby, therapeutic allogeneic hCPC might also contribute to post-infarct myocardial healing by modeling the activities of monocytes and their derived descendants.

16.
Circ Res ; 121(1): 71-80, 2017 Jun 23.
Artículo en Inglés | MEDLINE | ID: mdl-28533209

RESUMEN

RATIONALE: Stem cell therapy has increased the therapeutic armamentarium in the fight against ischemic heart disease and heart failure. The administration of exogenous stem cells has been investigated in patients suffering an acute myocardial infarction, with the final aim of salvaging jeopardized myocardium and preventing left ventricular adverse remodeling and functional deterioration. However, phase I and II clinical trials with autologous and first-generation stem cells have yielded inconsistent benefits and mixed results. OBJECTIVE: In the search for new and more efficient cellular regenerative products, interesting cardioprotective, immunoregulatory, and cardioregenerative properties have been demonstrated for human cardiac stem cells. On the other hand, allogeneic cells show several advantages over autologous sources: they can be produced in large quantities, easily administered off-the-shelf early after an acute myocardial infarction, comply with stringent criteria for product homogeneity, potency, and quality control, and may exhibit a distinctive immunologic behavior. METHODS AND RESULTS: With a promising preclinical background, CAREMI (Cardiac Stem Cells in Patients With Acute Myocardial Infarction) has been designed as a double-blind, 2:1 randomized, controlled, and multicenter clinical trial that will evaluate the safety, feasibility, and efficacy of intracoronary delivery of allogeneic human cardiac stem cell in 55 patients with large acute myocardial infarction, left ventricular dysfunction, and at high risk of developing heart failure. CONCLUSIONS: This phase I/II clinical trial represents a novel experience in humans with allogeneic cardiac stem cell in a rigorously imaging-based selected group of acute myocardial infarction patients, with detailed safety immunologic assessments and magnetic resonance imaging-based efficacy end points. CLINICAL TRIAL REGISTRATION: URL: http://www.clinicaltrials.gov. Unique identifier: NCT02439398.


Asunto(s)
Vasos Coronarios , Infarto del Miocardio/terapia , Miocitos Cardíacos/trasplante , Trasplante de Células Madre/métodos , Disfunción Ventricular Izquierda/terapia , Vasos Coronarios/fisiología , Método Doble Ciego , Estudios de Factibilidad , Estudios de Seguimiento , Humanos , Infusiones Intraarteriales/métodos , Infarto del Miocardio/diagnóstico , Trasplante Homólogo/métodos , Resultado del Tratamiento , Disfunción Ventricular Izquierda/diagnóstico
18.
Sci Rep ; 7: 41125, 2017 01 24.
Artículo en Inglés | MEDLINE | ID: mdl-28117403

RESUMEN

Allogeneic human cardiac-derived stem/progenitor cells (hCPC) are currently under clinical investigation for cardiac repair. While cellular immune response against allogeneic hCPC could be part of their beneficial-paracrine effects, their humoral immune response remains largely unexplored. Donor-specific HLA antibodies (DSA-HLA-I/DSA-HLA-II), primary elements of antibody-mediated allograft injury, might present an unidentified risk to allogeneic hCPC therapy. Here we established that the binding strength of anti-HLA monoclonal antibodies delineates hCPC proneness to antibody-mediated injury. In vitro modeling of clinical setting demonstrated that specific DSA-HLA-I of high/intermediate binding strength are harmful for hCPC whereas DSA-HLA-II are benign. Furthermore, the Luminex-based solid-phase assays are suitable to predict the DSA-HLA risk to therapeutic hCPC. Our data indicate that screening patient sera for the presence of HLA antibodies is important to provide an immune-educated choice of allogeneic therapeutic cells, minimize the risk of precipitous elimination and promote the allogeneic reparative effects.


Asunto(s)
Anticuerpos/análisis , Antígenos HLA/inmunología , Prueba de Histocompatibilidad , Trasplante de Células Madre/métodos , Células Madre/inmunología , Anticuerpos/inmunología , Humanos , Inmunidad Humoral , Miocardio/citología , Miocardio/inmunología
19.
Sci Rep ; 6: 35296, 2016 10 19.
Artículo en Inglés | MEDLINE | ID: mdl-27759009

RESUMEN

The outbreak of the Zika Virus (ZIKV) and its association with fetal abnormalities have raised worldwide concern. However, the cellular tropism and the mechanisms of ZIKV transmission to the fetus during early pregnancy are still largely unknown. Therefore, we ex vivo modeled the ZIKV transmission at the maternal-fetal interface using organ culture from first trimester pregnancy samples. Here, we provide evidence that ZIKV strain circulating in Brazil infects and damages tissue architecture of the maternal decidua basalis, the fetal placenta and umbilical cord. We also show that ZIKV replicates differentially in a wide range of maternal and fetal cells, including decidual fibroblasts and macrophages, trophoblasts, Hofbauer cells as well as umbilical cord mesenchymal stem cells. The striking cellular tropism of ZIKV and its cytopathic-induced tissue injury during the first trimester of pregnancy could provide an explanation for the irreversible congenital damages.


Asunto(s)
Placenta/virología , Tropismo Viral/genética , Infección por el Virus Zika/transmisión , Virus Zika/genética , Adolescente , Adulto , Brasil , Femenino , Humanos , Relaciones Materno-Fetales , Placenta/patología , Embarazo , Primer Trimestre del Embarazo/genética , Virus Zika/patogenicidad , Infección por el Virus Zika/virología
20.
Oncotarget ; 7(33): 53350-53361, 2016 Aug 16.
Artículo en Inglés | MEDLINE | ID: mdl-27462789

RESUMEN

Estrogen receptor-, progesterone receptor- and HER2-negative breast cancers, also known as triple-negative breast cancers (TNBCs), have poor prognoses and are refractory to current therapeutic agents, including epidermal growth factor receptor (EGFR) inhibitors. Resistance to anti-EGFR therapeutic agents is often associated with sustained kinase phosphorylation, which promotes EGFR activation and translocation to the nucleus and prevents these agents from acting on their targets. The mechanisms underlying this resistance have not been fully elucidated. In addition, the IL-17E receptor is overexpressed in TNBC tumors and is associated with a poor prognosis. We have previously reported that IL-17E promotes TNBC resistance to anti-mitotic therapies. Here, we investigated whether IL-17E promotes TNBC resistance to anti-EGFR therapeutic agents by exploring the link between the IL-17E/IL-17E receptor axis and EGF signaling. We found that IL-17E, similarly to EGF, activates the EGFR in TNBC cells that are resistant to EGFR inhibitors. It also activates the PYK-2, Src and STAT3 kinases, which are essential for EGFR activation and nuclear translocation. IL-17E binds its specific receptor, IL-17RA/IL17RB, on these TNBC cells and synergizes with the EGF signaling pathway, thereby inducing Src-dependent EGFR transactivation and pSTAT3 and pEGFR translocation to the nucleus. Collectively, our data indicate that the IL-17E/IL-17E receptor axis may underlie TNBC resistance to EGFR inhibitors and suggest that inhibiting IL-17E or its receptor in combination with EGFR inhibitor administration may improve TNBC management.


Asunto(s)
Factor de Crecimiento Epidérmico/farmacología , Receptores ErbB/antagonistas & inhibidores , Interleucina-17/farmacología , Quinazolinas/farmacología , Línea Celular Tumoral , Núcleo Celular/efectos de los fármacos , Núcleo Celular/metabolismo , Resistencia a Antineoplásicos/efectos de los fármacos , Sinergismo Farmacológico , Receptores ErbB/metabolismo , Femenino , Gefitinib , Humanos , Fosforilación/efectos de los fármacos , Inhibidores de Proteínas Quinasas/farmacología , Transporte de Proteínas/efectos de los fármacos , Factor de Transcripción STAT3/metabolismo , Transducción de Señal/efectos de los fármacos , Neoplasias de la Mama Triple Negativas/tratamiento farmacológico , Neoplasias de la Mama Triple Negativas/metabolismo , Neoplasias de la Mama Triple Negativas/patología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...