Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 90
Filtrar
Más filtros













Base de datos
Intervalo de año de publicación
1.
RSC Adv ; 14(24): 16846-16858, 2024 May 22.
Artículo en Inglés | MEDLINE | ID: mdl-38784418

RESUMEN

Harnessing solar energy for large-scale hydrogen fuel (H2) production shows promise in addressing the energy crisis and ecological degradation. This study focuses on the development of GaN-based photoelectrodes for efficient photoelectrochemical (PEC) water splitting, enabling environmentally friendly H2 production. Herein, a novel nanoflower Au/CuO/GaN hybrid structure was successfully synthesized using a combination of methods including successive ionic layer adsorption and reaction (SILAR), RF/DC sputtering, and metal-organic chemical vapour deposition (MOCVD) techniques. Structural, morphological, and optical characteristics and elemental composition of the prepared samples were analyzed using X-ray diffraction (XRD), scanning electron microscopy (SEM), UV-Vis spectroscopy, and energy-dispersive X-ray (EDX) spectroscopy, respectively. PEC and electrochemical impedance measurements were performed for all samples. The nanoflower Au/CuO/GaN hybrid structure exhibited the highest photocurrent density of ∼4 mA cm-2 at 1.5 V vs. RHE in a Na2SO4 electrolyte with recorded moles of H2 of about 3246 µmol h-1 cm-2. By combining these three materials in a unique structure, we achieved improved performance in the conversion of solar energy into chemical energy. The nanoflower structure provides a large surface area and promotes light absorption while the Au, CuO, and GaN components contribute to efficient charge separation and transfer. This study presents a promising strategy for advancing sustainable H2 production via efficient solar-driven water splitting.

2.
Angew Chem Int Ed Engl ; 63(23): e202403245, 2024 Jun 03.
Artículo en Inglés | MEDLINE | ID: mdl-38578838

RESUMEN

The encapsulation of functional colloidal nanoparticles (100 nm) into single-crystalline ZSM-5 zeolites, aiming to create uniform core-shell structures, is a highly sought-after yet formidable objective due to significant lattice mismatch and distinct crystallization properties. In this study, we demonstrate the fabrication of a core-shell structured single-crystal zeolite encompassing an Fe3O4 colloidal core via a novel confinement stepwise crystallization methodology. By engineering a confined nanocavity, anchoring nucleation sites, and executing stepwise crystallization, we have successfully encapsulated colloidal nanoparticles (CN) within single-crystal zeolites. These grafted sites, alongside the controlled crystallization process, compel the zeolite seed to nucleate and expand along the Fe3O4 colloidal nanoparticle surface, within a meticulously defined volume (1.5×107≤V≤1.3×108 nm3). Our strategy exhibits versatility and adaptability to an array of zeolites, including but not restricted to ZSM-5, NaA, ZSM-11, and TS-1 with polycrystalline zeolite shell. We highlight the uniformly structured magnetic-nucleus single-crystalline zeolite, which displays pronounced superparamagnetism (14 emu/g) and robust acidity (~0.83 mmol/g). This innovative material has been effectively utilized in a magnetically stabilized bed (MSB) reactor for the dehydration of ethanol, delivering an exceptional conversion rate (98 %), supreme ethylene selectivity (98 %), and superior catalytic endurance (in excess of 100 hours).

3.
Adv Mater ; : e2313747, 2024 Apr 29.
Artículo en Inglés | MEDLINE | ID: mdl-38685565

RESUMEN

Recovering platinum group metals from secondary resources is crucial to meet the growing demand for high-tech applications. Various techniques are explored, and adsorption using porous materials has emerged as a promising technology due to its efficient performance and environmental beingness. However, the challenge lies in effectively recovering and separating individual platinum group metals (PGMs) given their similar chemical properties. Herein, a breakthrough approach is presented by sophisticatedly tailoring the coordination micro-environment in a series of aminopyridine-based porous organic polymers, which enables the creation of platinum-specific nanotraps for efficient separation of binary PGMs (platinum/palladium). The newly synthesized POP-o2NH2-Py demonstrates record uptakes and selectivity toward platinum over palladium, with the amino groups adjacent to the pyridine moieties being vital in improving platinum binding performance. Further breakthrough experiments underline its remarkable ability to separate platinum and palladium. Spectroscopic analysis reveals that POP-o2NH2-Py offers a more favorable coordination fashion to platinum ions compared to palladium ions owing to the greater interaction between N and Pt4+ and stronger intramolecular hydrogen bonding between the amino groups and four coordinating chlorines at platinum. These findings underscore the importance of fine-tuning the coordination micro-environment of nanotraps through subtle modifications that can greatly enhance the selectivity toward the desired metal ions.

4.
J Am Chem Soc ; 146(11): 7341-7351, 2024 Mar 20.
Artículo en Inglés | MEDLINE | ID: mdl-38442250

RESUMEN

The C2H2 separation from CO2 and C2H4 is of great importance yet highly challenging in the petrochemical industry, owing to their similar physical and chemical properties. Herein, the pore nanospace engineering of cage-like mixed-ligand MFOF-1 has been accomplished via contracting the size of the pyridine- and carboxylic acid-functionalized linkers and introducing a fluoride- and sulfate-bridging cobalt cluster, based on a reticular chemistry strategy. Compared with the prototypical MFOF-1, the constructed FJUT-1 with the same topology presents significantly improved C2H2 adsorption capacity, and selective C2H2 separation performance due to the reduced cage cavity size, functionalized pore surface, and appropriate pore volume. The introduction of fluoride- and sulfate-bridging cubane-type tetranuclear cobalt clusters bestows FJUT-1 with exceptional chemical stability under harsh conditions while providing multiple potential C2H2 binding sites, thus rendering the adequate ability for practical C2H2 separation application as confirmed by the dynamic breakthrough experiments under dry and humid conditions. Additionally, the distinct binding mechanism is suggested by theoretical calculations in which the multiple supramolecular interactions involving C-H···O, C-H···F, and other van der Waals forces play a critical role in the selective C2H2 separation.

5.
Chemosphere ; 351: 141244, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38242515

RESUMEN

Amines, which are classified as volatile organic compounds (VOCs), serve a variety of purposes in the fields of environmental monitoring, food safety, and healthcare diagnosis. The present technique for detecting amine levels involves sophisticated setups and bulky equipment. Here. In this study, a chemoresistive gas sensor is developed that is cost-effective and easy to operate at room temperature (RT). The sensor is designed specifically for the detection of Ammonia, dimethylamine (DMA), trimethylamine (TMA), and total volatile basic nitrogen (TVB-N). Using biphenyl-reduced graphene oxide (B-rGO) composite gas sensors effectively addresses the issues of low sensitivity-selectivity and long-term instability commonly observed in conventional amine sensors. B-rGO sensor produced sensitivity of ∼3500 and selectivity above 30 for TVB-N sensing. The sensor is stable for temperature fluctuations below 50 °C and shows stable sensing response for period of over 3 months. A Chemoresistive B-rGO sensor was developed using an ultrasonic spray deposition system with optimized flow rate of 50 mL/h. Rapid evaporation of solvent using hot plate has resulted in unique morphology for B-rGO film sensors. The highest sensitivity, ∼836, is obtained for 100 ppm of ammonia with ammonia > DMA > TMA as a sensitivity order. B-rGO showed almost seven times higher amine sensitivity than rGO which highlights the importance of biphenyl in the B-rGO composite. Sensor calibration curve has been presented in the study to understand change in the sensitivity of sensor with increasing analyte gas concentration. The calibration curve has an average R-squared value of 0.98.


Asunto(s)
Aminas , Amoníaco , Compuestos de Bifenilo , Dimetilaminas , Grafito , Metilaminas , Temperatura , Nitrógeno
6.
Small ; 20(12): e2306940, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38127968

RESUMEN

The development of external stimuli-controlled payload systems has been sought after with increasing interest toward magnetothermally-triggered drug release (MTDR) carriers due to their non-invasive features. However, current MTDR carriers present several limitations, such as poor heating efficiency caused by the aggregation of iron oxide nanoparticles (IONPs) or the presence of antiferromagnetic phases which affect their efficiency. Herein, a novel MTDR carrier is developed using a controlled encapsulation method that fully fixes and confines IONPs of various sizes within the metal-organic frameworks (MOFs). This novel carrier preserves the MOF's morphology, porosity, and IONP segregation, while enhances heating efficiency through the oxidation of antiferromagnetic phases in IONPs during encapsulation. It also features a magnetothermally-responsive nanobrush that is stimulated by an alternating magnetic field to enable on-demand drug release. The novel carrier shows improved heating, which has potential applications as contrast agents and for combined chemo and magnetic hyperthermia therapy. It holds a great promise for magneto-thermally modulated drug dosing at tumor sites, making it an exciting avenue for cancer treatment.


Asunto(s)
Antineoplásicos , Hipertermia Inducida , Estructuras Metalorgánicas , Portadores de Fármacos , Campos Magnéticos
7.
Nat Commun ; 14(1): 7022, 2023 Nov 02.
Artículo en Inglés | MEDLINE | ID: mdl-37919267

RESUMEN

Crystalline porous materials such as covalent organic frameworks (COFs), metal-organic frameworks (MOFs) and porous organic cages (POCs) have been widely applied in various fields with outstanding performances. However, the lack of general and effective methodology for large-scale production limits their further industrial applications. In this work, we developed a general approach comprising high pressure homogenization (HPH), which can realize large-scale synthesis of crystalline porous materials including COFs, MOFs, and POCs under benign conditions. This universal strategy, as illustrated in the proof of principle studies, has prepared 4 COFs, 4 MOFs, and 2 POCs. It can circumvent some drawbacks of existing approaches including low yield, high energy consumption, low efficiency, weak mass/thermal transfer, tedious procedures, poor reproducibility, and high cost. On the basis of this approach, an industrial homogenizer can produce 0.96 ~ 580.48 ton of high-performance COFs, MOFs, and POCs per day, which is unachievable via other methods.

8.
ACS Cent Sci ; 9(8): 1692-1701, 2023 Aug 23.
Artículo en Inglés | MEDLINE | ID: mdl-37637733

RESUMEN

The development of efficient heterogeneous catalysts with multiselectivity (e.g., enantio- and chemoselectivity) has long been sought after but with limited progress being made so far. To achieve enantio- and chemoselectivity in a heterogeneous system, as inspired by enzymes, we illustrate herein an approach of creating an enzyme-mimic region (EMR) within the nanospace of a metal-organic framework (MOF) as exemplified in the context of incorporating a chiral frustrated Lewis pair (CFLP) into a MOF with a tailored pore environment. Due to the high density of the EMR featuring the active site of CFLP and auxiliary sites of the hydroxyl group/open metal site within the vicinity of CFLP, the resultant EMR@MOF demonstrated excellent catalysis performance in heterogeneous hydrogenation of α,ß-unsaturated imines to afford chiral ß-unsaturated amines with high yields and high enantio- and chemoselectivity. The role of the hydroxyl group/open metal site in regulating chemoselectivity was proved by the observation of a catalyst-substrate interaction experimentally, which was also rationalized by computational results. This work not only contributes a MOF as a new platform for multiselective catalysis but also opens a promising avenue to develop heterogeneous catalysts with multiselectivity for challenging yet important transformations.

9.
Chemosphere ; 341: 139982, 2023 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-37648169

RESUMEN

Carbon nanotubes (CNTs) composed of bimetallic nickel-palladium (NiPd) nanoparticles encapsulated in graphitic carbon shells (NdPd@CNT) are prepared by the chemical vapour deposition method using waste polyethylene terephthalate (PET) plastic carbon sources and NiPd-decorated carbon sheets (NiPd@C) catalyst. The characterization results reveal that the face-centered cubic crystalline (fcc)-structured NiPd bimetallic alloy nanoparticles are encased by thin carbon nanotubes. The bimetallic synergism of NiPd nanoparticles actuates the outer CNT layers and accelerates the electrical conductivity, stimulating the electrochemical activity toward an effective hydrogen evolution reaction (HER). By virtue of the collective individualities of highly conductive aligned carbon walls and bimetallic active sites, the NiPd@CNT-equipped HER delivers a minimum overpotential of 87 mV and a Tafel slope value of 95 mV dec-1. The existing intact contact between NiPd and CNT facilitates continuous electron and ion transportation and firm stability toward long-term hydrogen production in HER. Notably, the NiPd@CNT reported here produces excellent electrochemical activity with minimal charge transference resistance, substantiating the efficacy of NiPd@CNT for futuristic green hydrogen production.


Asunto(s)
Hidrógeno , Nanotubos de Carbono , Níquel , Paladio , Gases
10.
Dalton Trans ; 52(33): 11481-11488, 2023 Aug 22.
Artículo en Inglés | MEDLINE | ID: mdl-37534542

RESUMEN

The successful deployment of sodium-ion batteries (SIBs) requires high-performance sustainable and cost-effective anode materials having a high current density. In this regard, sodium disulphide (NiS2) has been prepared as a composite with activated carbon (C) using a facile hydrothermal synthesis route in the past. The X-ray diffraction pattern of the as-prepared NiS2/C composite material shows well-defined diffraction peaks of NiS2. Most carbonaceous materials are amorphous, and the Brunauer-Emmett-Teller (BET) study shows that the surface area is close to 148 m2 g-1. At a current density of 50 mA g-1, the NiS2/C composite exhibits a high capacity of 480 mA h g-1 during the initial cycle, which subsequently decreases to 333 mA h g-1 after the completion of the 100th cycle. The NiS2/C composite electrode provides an exceptional rate capability by delivering a capacity of 270 mA h g-1 at a high current density of 2000 mA g-1, suggesting the suitability of the NiS2/C composite for SIBs. Ex situ X-ray absorption near edge structure (XANES) and extended X-ray absorption fine structure (EXAFS) analyses at the Ni K-edge have been used to examine the type of chemical bonding present in the anode and also how it changes during electrochemical redox cycling. The understanding of the sodium storage mechanism is improved by the favorable results, which also offer insights for developing high-performance electrode materials for rechargeable SIBs.

11.
Dalton Trans ; 52(32): 11062-11066, 2023 Aug 15.
Artículo en Inglés | MEDLINE | ID: mdl-37519129

RESUMEN

An inorganic-organic hybrid probe MP-ZIF-90 was synthesized via a simple condensation reaction based on the free CHO groups of zeolitic imidazolate framework-90 (ZIF-90) and 4-methyl-1-(4-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)benzyl)pyridinium bromide (MP). This probe exhibited intense green emission, which was selectively quenched by the addition of ClO- anions. The response of probe MP-ZIF-90 toward ClO- was rapid (within 20 s) and sensitive, with a limit of detection (LOD) of 0.612 µM. Importantly, the utilization of the probe in the fluorescence imaging of ClO- anions in the mitochondria of living cells and zebrafish was demonstrated.


Asunto(s)
Colorantes Fluorescentes , Zeolitas , Animales , Pez Cebra , Ácido Hipocloroso , Mitocondrias
12.
J Am Chem Soc ; 145(27): 14994-15000, 2023 Jul 12.
Artículo en Inglés | MEDLINE | ID: mdl-37384612

RESUMEN

Hydrogenated nitrogen heterocyclic compounds play a critical role in the pharmaceutical, polymer, and agrochemical industries. Recent studies on partial hydrogenation of nitrogen heterocyclic compounds have focused on costly and toxic precious metal catalysts. As an important class of main-group catalysts, frustrated Lewis pairs (FLPs) have been widely applied in catalytic hydrogenation reactions. In principle, the combination of FLPs and metal-organic framework (MOF) is anticipated to efficiently enhance the recyclability performance of FLPs; however, the previously studied MOF-FLPs showed low reactivity in the hydrogenation of N-heterocycles compounds. Herein, we offer a novel P/B type MOF-FLP catalyst that was achieved via a solvent-assisted linker incorporation approach to boost catalytic hydrogenation reactions. Using hydrogen gas under moderate pressure, the proposed P/B type MOF-FLP can serve as a highly efficient heterogeneous catalyst for selective hydrogenation of quinoline and indole to tetrahydroquinoline and indoline-type drug compounds in high yield and excellent recyclability.

13.
Chemosphere ; 337: 139346, 2023 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-37379988

RESUMEN

Polymer Matrix Composite (PMC/Plastic Composite) often referred to as Plastic Composite with Natural fibre reinforcement has a huge interest in industries to manufacture components for various applications including medical, transportation, sports equipment etc. In the universe, different types of natural fibres are available which can be used for the reinforcement in PMC/Plastic Composite. So, the selection of appropriate fibre for the PMC/Plastic Composite/Plastic composite is a challenging task, but it can be done using an effective metaheuristic or optimization techniques. But in this type of optimal reinforcement fibre or matrix material selection, the optimization is formulated based on any one of the parameters of the composition. Hence to analyse the various parameter of any PMC/Plastic Composite/Plastic Composite without real manufacturing, a machine learning technique is recommended. The conventional simple or single-layer machine learning techniques were not sufficient to emulate the exact real-time performance of the PMC/Plastic Composite. Thus, a deep multi-layer perceptron (Deep MLP) algorithm is proposed to analyse the various parameter of PMC/Plastic Composite with natural fibre reinforcement. In the proposed technique the MLP is modified by including around 50 hidden layers to enhance its performance. In every hidden layer, the basis function is evaluated and subsequently, the sigmodal function-based activation is calculated. The proposed Deep MLP is utilized to evaluate the various parameters of PMC/Plastic Composite Tensile Strength, Tensile Modulus, Flexural Yield Strength, Flexural Yield Modulus, Young's Modulus, Elastic Modulus and Density. Then the obtained parameter is compared with the actual value and the performance of the proposed Deep MLP is evaluated based on the accuracy, precision, and recall. The proposed Deep MLP attained 87.2%, 87.18%, and 87.22% of accuracy, precision, and recall. Ultimately the proposed system proves that the proposed Deep MLP can perform better for the prediction of various parameters of PMC/Plastic Composite with natural fibre reinforcement.


Asunto(s)
Plásticos , Polímeros , Redes Neurales de la Computación , Módulo de Elasticidad , Algoritmos
14.
Angew Chem Int Ed Engl ; 62(26): e202304303, 2023 Jun 26.
Artículo en Inglés | MEDLINE | ID: mdl-37130008

RESUMEN

One striking feature of enzyme is its controllable ability to trap substrates via synergistic or cooperative binding in the enzymatic pocket, which renders the shape-selectivity of product by the confined spatial environment. The success of shape-selective catalysis relies on the ability of enzyme to tune the thermodynamics and kinetics for chemical reactions. In emulation of enzyme's ability, we showcase herein a targeting strategy with the substrate being anchored on the internal pore wall of metal-organic frameworks (MOFs), taking full advantage of the sterically kinetic control to achieve shape-selectivity for the reactions. For this purpose, a series of binding site-accessible metal metalloporphyrin-frameworks (MMPFs) have been investigated to shed light on the nature of enzyme-mimic catalysis. They exhibit a different density of binding sites that are well arranged into the nanospace with corresponding distances of opposite binding sites. Such a structural specificity results in a facile switch in selectivity from an exclusive formation of the thermodynamically stable product to the kinetic product. Thus, the proposed targeting strategy, based on the combination of porous materials and binding events, paves a new way to develop highly efficient heterogeneous catalysts for shifting selectivity.


Asunto(s)
Metaloporfirinas , Metaloporfirinas/química , Espacios Confinados , Cinética , Sitios de Unión , Catálisis
15.
Angew Chem Int Ed Engl ; 62(21): e202302564, 2023 May 15.
Artículo en Inglés | MEDLINE | ID: mdl-36940231

RESUMEN

Developing adsorptive separation processes based on C2 H6 -selective sorbents to replace energy-intensive cryogenic distillation is a promising alternative for C2 H4 purification from C2 H4 /C2 H6 mixtures, which however remains challenging. During our studies on two isostructural metal-organic frameworks (Ni-MOF 1 and Ni-MOF 2), we found that Ni-MOF 2 exhibited significantly higher performance for C2 H6 /C2 H4 separation than Ni-MOF-1, as clearly established by gas sorption isotherms and breakthrough experiments. Density-Functional Theory (DFT) studies showed that the unblocked unique aromatic pore surfaces within Ni-MOF 2 induce more and stronger C-H⋅⋅⋅π with C2 H6 over C2 H4 while the suitable pore spaces enforce its high C2 H6 uptake capacity, featuring Ni-MOF 2 as one of the best porous materials for this very important gas separation. It generates 12 L kg-1 of polymer-grade C2 H4 product from equimolar C2 H6 /C2 H4 mixtures at ambient conditions.

16.
Nat Commun ; 14(1): 973, 2023 02 21.
Artículo en Inglés | MEDLINE | ID: mdl-36810582

RESUMEN

Immobilization of biomolecules into porous materials could lead to significantly enhanced performance in terms of stability towards harsh reaction conditions and easier separation for their reuse. Metal-Organic Frameworks (MOFs), offering unique structural features, have emerged as a promising platform for immobilizing large biomolecules. Although many indirect methods have been used to investigate the immobilized biomolecules for diverse applications, understanding their spatial arrangement in the pores of MOFs is still preliminary due to the difficulties in directly monitoring their conformations. To gain insights into the spatial arrangement of biomolecules within the nanopores. We used in situ small-angle neutron scattering (SANS) to probe deuterated green fluorescent protein (d-GFP) entrapped in a mesoporous MOF. Our work revealed that GFP molecules are spatially arranged in adjacent nanosized cavities of MOF-919 to form "assembly" through adsorbate-adsorbate interactions across pore apertures. Our findings, therefore, lay a crucial foundation for the identification of proteins structural basics under confinement environment of MOFs.


Asunto(s)
Estructuras Metalorgánicas , Nanoporos , Proteínas Fluorescentes Verdes , Neutrones , Porosidad
17.
Dalton Trans ; 52(9): 2735-2748, 2023 Feb 28.
Artículo en Inglés | MEDLINE | ID: mdl-36749193

RESUMEN

We present the combustion-based synthesis of BiFeO3 (BFO) and Gd:BiFeO3 perovskite nanoparticles. XRD analysis demonstrates that the undoped BFO (x = 0) perovskite sample shows a single perovskite phase with a rhombohedral structure. However, increase in the Gd3+ content from x = 0.05 and 0.15 to 0.25 led to the occurrence of a structural phase transformation from rhombohedral (BiFeO3) to orthorhombic (Bi2Fe4O9). With an increase in the Gd-dopant the average crystallite size of rhombohedral structures increased from 16 to 23 nm. The perovskite samples were examined using XPS, which confirmed the presence of Bi3+, Gd3+, Fe2+, and O2+ ions. FT-IR spectroscopy indicated the existence of elemental functional groups in the synthesized perovskite nanoparticles. Furthermore, the direct band gap measured by DRS reduced from 2.16 to 2.0 eV as the Gd concentration increased. The nanoparticles of the BFO perovskite had an uneven shape, a tendency to agglomerate, and fused grains with defined grain boundaries. At ambient temperature, both the undoped and Gd:BFO perovskite nanoparticles exhibit a ferromagnetic characteristic. It was found that the BET surface area of the undoped and Gd-doped BFO perovskite nanoparticles varied progressively from 4.38 to 33.52 m2 g-1. The catalytic oxidation studies conducted in a batch reactor under air conditions revealed that the synthesized catalysts, in particular, Gd:BFO (x = 0.25), exhibited higher conversion and selectivity efficiencies for glycerol (con. 100% and sel. 99.5%, respectively).

18.
Angew Chem Int Ed Engl ; 62(2): e202213399, 2023 Jan 09.
Artículo en Inglés | MEDLINE | ID: mdl-36347776

RESUMEN

Asymmetric hydrogenation, a seminal strategy for the synthesis of chiral molecules, remains largely unmet in terms of activation by non-metal sites of heterogeneous catalysts. Herein, as demonstrated by combined computational and experimental studies, we present a general strategy for integrating rationally designed molecular chiral frustrated Lewis pair (CFLP) with porous metal-organic framework (MOF) to construct the catalyst CFLP@MOF that can efficiently promote the asymmetric hydrogenation in a heterogeneous manner, which for the first time extends the concept of chiral frustrated Lewis pair from homogeneous system to heterogeneous catalysis. Significantly, the developed CFLP@MOF, inherits the merits of both homogeneous and heterogeneous catalysts, with high activity/enantio-selectivity and excellent recyclability/regenerability. Our work not only advances CFLP@MOF as a new platform for heterogeneous asymmetric hydrogenation, but also opens a new avenue for the design and preparation of advanced catalysts for asymmetric catalysis.

19.
Nanoscale Adv ; 4(22): 4724-4729, 2022 Nov 08.
Artículo en Inglés | MEDLINE | ID: mdl-36545390

RESUMEN

We present a method to anneal devices based on graphite films on paper and polycarbonate substrates. The devices are created using four different methods: spray-on films, graphite pencil-drawn films, liquid-phase exfoliated graphite films, and graphite powder abrasion-applied films. We characterize the optical properties of the films before and after laser annealing and report the two-terminal resistance of the devices for increased laser power density. We find the greatest improvement (16× reduction) in the resistance of spray-on film devices starting from 25.0 kΩ and reaching 1.6 kΩ at the highest annealing power densities. These improvements are attributed to local laser ablation of binders, stabilizers, and solvent residues left in the film after fabrication. This work highlights the utility of focused laser annealing for spray-on, drawn, printed, and abrasion fabricated films on substrates sensitive to heat/thermal treatments.

20.
ACS Appl Mater Interfaces ; 14(40): 45765-45774, 2022 Oct 12.
Artículo en Inglés | MEDLINE | ID: mdl-36174114

RESUMEN

Polymer-grafted nanoparticles (PGNPs) have attracted extensive research interest due to their potential for enhancing mechanical and electrical properties of both bulk polymer composite materials, as well as thin polymer films incorporating these nanoparticles (NPs). In previous studies, we have shown that an entropic driving force serves to organize low-molecular-mass PGNPs in imprinted blend films of PGNPs with low-molecular-mass homopolymers. In this work, we developed a novel solvent vapor annealing soft lithography (SVA-SL) method to overcome the technical difficulties in processing the high-molecular-mass PGNP blends due to the intrinsically sluggish melt annealing kinetics found in the phase separation of these blend PGNP materials. In particular, we utilized SVA-SL to create nanopatterns in blends of PGNPs having relatively high-molecular-mass-grafted layers but with cores of NPs having greatly different sizes. The minimization of the entropic free energy in the present system corresponded to larger PGNPs partitioning almost exclusively into the "mesa" regions of the imprinted PGNP blend films, as quantified by the estimation of the partition coefficient, Kp. The use of the SVA-SL processing method is important because it allows facile imprint patterning of PGNP materials and large-scale organization of the PGNPs even when the grafted chain lengths are long enough for the chains to be highly entangled, allowing enhanced thermo-mechanical property enhancements of the resulting films and a corresponding extended range of potential nanotech applications.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA