Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
J Clin Med ; 13(6)2024 Mar 20.
Artículo en Inglés | MEDLINE | ID: mdl-38542012

RESUMEN

Background: Datasets on rare diseases, like pediatric acute myeloid leukemia (AML) and acute lymphoblastic leukemia (ALL), have small sample sizes that hinder machine learning (ML). The objective was to develop an interpretable ML framework to elucidate actionable insights from small tabular rare disease datasets. Methods: The comprehensive framework employed optimized data imputation and sampling, supervised and unsupervised learning, and literature-based discovery (LBD). The framework was deployed to assess treatment-related infection in pediatric AML and ALL. Results: An interpretable decision tree classified the risk of infection as either "high risk" or "low risk" in pediatric ALL (n = 580) and AML (n = 132) with accuracy of ∼79%. Interpretable regression models predicted the discrete number of developed infections with a mean absolute error (MAE) of 2.26 for bacterial infections and an MAE of 1.29 for viral infections. Features that best explained the development of infection were the chemotherapy regimen, cancer cells in the central nervous system at initial diagnosis, chemotherapy course, leukemia type, Down syndrome, race, and National Cancer Institute risk classification. Finally, SemNet 2.0, an open-source LBD software that links relationships from 33+ million PubMed articles, identified additional features for the prediction of infection, like glucose, iron, neutropenia-reducing growth factors, and systemic lupus erythematosus (SLE). Conclusions: The developed ML framework enabled state-of-the-art, interpretable predictions using rare disease tabular datasets. ML model performance baselines were successfully produced to predict infection in pediatric AML and ALL.

2.
Bioengineering (Basel) ; 10(8)2023 Aug 02.
Artículo en Inglés | MEDLINE | ID: mdl-37627803

RESUMEN

This work presents SeizFt-a novel seizure detection framework that utilizes machine learning to automatically detect seizures using wearable SensorDot EEG data. Inspired by interpretable sleep staging, our novel approach employs a unique combination of data augmentation, meaningful feature extraction, and an ensemble of decision trees to improve resilience to variations in EEG and to increase the capacity to generalize to unseen data. Fourier Transform (FT) Surrogates were utilized to increase sample size and improve the class balance between labeled non-seizure and seizure epochs. To enhance model stability and accuracy, SeizFt utilizes an ensemble of decision trees through the CatBoost classifier to classify each second of EEG recording as seizure or non-seizure. The SeizIt1 dataset was used for training, and the SeizIt2 dataset for validation and testing. Model performance for seizure detection was evaluated using two primary metrics: sensitivity using the any-overlap method (OVLP) and False Alarm (FA) rate using epoch-based scoring (EPOCH). Notably, SeizFt placed first among an array of state-of-the-art seizure detection algorithms as part of the Seizure Detection Grand Challenge at the 2023 International Conference on Acoustics, Speech, and Signal Processing (ICASSP). SeizFt outperformed state-of-the-art black-box models in accurate seizure detection and minimized false alarms, obtaining a total score of 40.15, combining OVLP and EPOCH across two tasks and representing an improvement of ~30% from the next best approach. The interpretability of SeizFt is a key advantage, as it fosters trust and accountability among healthcare professionals. The most predictive seizure detection features extracted from SeizFt were: delta wave, interquartile range, standard deviation, total absolute power, theta wave, the ratio of delta to theta, binned entropy, Hjorth complexity, delta + theta, and Higuchi fractal dimension. In conclusion, the successful application of SeizFt to wearable SensorDot data suggests its potential for real-time, continuous monitoring to improve personalized medicine for epilepsy.

3.
Int ACM SIGIR Conf Res Dev Inf Retr ; 2023: 2913-2923, 2023 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38690157

RESUMEN

This work presents a new, original document classification dataset, BioSift, to expedite the initial selection and labeling of studies for drug repurposing. The dataset consists of 10,000 human-annotated abstracts from scientific articles in PubMed. Each abstract is labeled with up to eight attributes necessary to perform meta-analysis utilizing the popular patient-intervention-comparator-outcome (PICO) method: has human subjects, is clinical trial/cohort, has population size, has target disease, has study drug, has comparator group, has a quantitative outcome, and an "aggregate" label. Each abstract was annotated by 3 different annotators (i.e., biomedical students) and randomly sampled abstracts were reviewed by senior annotators to ensure quality. Data statistics such as reviewer agreement, label co-occurrence, and confidence are shown. Robust benchmark results illustrate neither PubMed advanced filters nor state-of-the-art document classification schemes (e.g., active learning, weak supervision, full supervision) can efficiently replace human annotation. In short, BioSift is a pivotal but challenging document classification task to expedite drug repurposing. The full annotated dataset is publicly available and enables research development of algorithms for document classification that enhance drug repurposing.

4.
Artículo en Inglés | MEDLINE | ID: mdl-38682049

RESUMEN

Seizure detection using machine learning is a critical problem for the timely intervention and management of epilepsy. We propose SeizFt, a robust seizure detection framework using EEG from a wearable device. It uses features paired with an ensemble of trees, thus enabling further interpretation of the model's results. The efficacy of the underlying augmentation and class-balancing strategy is also demonstrated. This study was performed for the Seizure Detection Challenge 2023, an ICASSP Grand Challenge.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...