Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
Saudi J Biol Sci ; 29(4): 2719-2726, 2022 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-35531145

RESUMEN

The study was planned to investigate DNA fragmentation in fish to screen aquatic toxicity and in Epinephalus chlorostigma and Scamberomorus commerson collected from Red sea near Jizan, Saudi Arabia from three locations "(Corniche North park: "16.92161, 42.54631; Jizan Port: 16.874, 42.54952" N and Jizan Economic City: 17.26589, 42.34738" ")" were used as a case study for the application of comet assay. The study area of the Red Sea is polluted due to anthropogenic activities and the disposal of wastes from multiple sources. Comet and micronucleus assays were used to detect genotoxicity in these fish species harvested from three sites. The concentration of Pb, Cr, Zn, Mn, Cu, Cd, Sn, and Hg was higher in the water samples collected from the polluted site compared to the non-polluted site of the Red sea. Comet assay for S. commerson showed significant (p < 0.05) genetic damage about 44.33 ± 3.03% DNA in comet tail at site S1. It was subsequently reduced to 31.71 ± 3.52% and 22.11 ± 2.52% at sites S2 and S3. E. chlorostigma also showed significant DNA in comet tail as 17.34 ± 2.19%, 11.87 ± 3.01%, and 36.41 ± 3.98% at site S1-S3, respectively. Significant (p < 0.05) DNA damage was observed in the fishes procured from non-polluted locations and upstream locations. The micronucleus induction in E. chlorostigma was recorded as 23.20 ± 4.19 and 2.20 ± 0.58%, respectively, non-polluted and polluted sites. S. commerson exhibited significant differences between polluted and non-polluted sites (44.80 ± 3.73 and 8.20 ± 2.20‰) polluted and upstream (44.80 ± 3.73 and 20.60 ± 4.02‰), respectively. A significant difference was obtained between E. chlorostigma and S. commerson for nuclear abnormalities S. commerson showed higher frequencies for nuclear deformities than E. chlorostigma. S. commerson showed substantial micronucleus induction frequencies collected from an area of low pollution intensity (upstream). This study showed that E. clorostigma and S. commerson could be successfully used as a bioindicator to determine the health of the Red Sea through the most specific assays such as comet and micronucleus tests as an early warning and to devise the monitoring strategies to ensure a safe supply of fish for human consumption.

2.
Saudi J Biol Sci ; 28(10): 5860-5864, 2021 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-34588901

RESUMEN

Cadmium (Cd) is an industrial contaminant that poses severe threats to human and animal health. Vitexin (VIT) is a polyphenolic flavonoid of characteristic pharmacological properties. We explored the curative role of vitexin on Cd-induced mitochondrial-dysfunction in rat renal tissues. Twenty-four rats were equally divided into four groups and designated as control, Cd, Cd + vitexin and vitexin treated groups. The results showed that Cd exposure increased urea and creatinine levels while decreased creatinine clearance. Cd reduced the activities of antioxidant enzymes, i.e., catalase (CAT), superoxide dismutase (SOD), glutathione peroxidase (GPx) and glutathione content in the Cd exposed group. Cd exposure significantly (p < 0.05) elevated the reactive oxygen species (ROS) and Thiobarbituric acid reactive substances (TBARS) levels in rat kidney. Cd also caused a significant (p < 0.05) reduction in the mitochondrial TCA-cycle enzymes, including isocitrate dehydrogenase, succinate dehydrogenase, alpha-ketoglutarate dehydrogenase, and malate-dehydrogenase activities. Besides, mitochondrial respiratory chain enzymes, including NADH-dehydrogenase, coenzyme Q-cytochrome reductase, succinic-coenzyme Q, and cytochrome c-oxidase activities were also decreased under Cd exposure. Cd exposure also damaged the mitochondrial membrane potential (MMP). However, VIT treatment potentially reduced the detrimental effects of Cd in the kidney of rats. In conclusion, our study indicated that the VIT could attenuate the Cd-induced renal toxicity in rats.

3.
Saudi J Biol Sci ; 28(4): 2267-2271, 2021 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-33911941

RESUMEN

The cytotoxicity in freshwater fishes due to different industrial dyes in industrial effluents is a major worldwide issue. Hematoxylin dye has a wide range of uses in textile industries and laboratories. This study was aimed to evaluate the toxic effects of hematoxylin's sublethal effect in vitro in Cirrhinus mrigala. The fish was exposed to different grading concentrations of dye in the aquarium. Fish were sacrificed and dissected to remove the kidney after exposure to hematoxylin dye for specific time intervals. Nephrotoxicity and cytotoxicity induced by this dye were detected through histopathology by using the paraffin wax method. Immediate mortality of fish was noticed against the exposure to 0.08 g/L (LC50) concentration of dye, but at 0.008 mg/L and 0.018 mg/L, it showed tremendous tissue damage in the kidneys, significant reduction in fish growth. This dye induced many alterations in the kidney such as tubular degeneration, vacuolation, shrinkage of a glomerulus, reduced lumen, congestion in the kidney, glomerulonephritis, absence of Bowmen space, necrosis of the hematopoietic interstitial tissues, clogging of tubules, necrosis in the glomerulus and increased space between glomerulus and bowmen's capsule. Although this dye has a wide range of biological and industrial applications, a minute amount of hematoxylin released in effluents is quite toxic to aquatic fauna.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...