Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
Int J Obes (Lond) ; 2024 Jun 15.
Artículo en Inglés | MEDLINE | ID: mdl-38879729

RESUMEN

BACKGROUND AND OBJECTIVES: Dual amylin and calcitonin receptor agonists (DACRAs) are therapeutic candidates in the treatment of obesity with beneficial effects on weight loss superior to suppression of food intake. Hence, suggesting effects on energy expenditure by possibly targeting mitochondria in metabolically active tissue. METHODS: Male rats with HFD-induced obesity received a DACRA, KBP-336, every third day for 8 weeks. Upon study end, mitochondrial respiratory capacity (MRC), - enzyme activity, - transcriptional factors, and -content were measured in perirenal (pAT) and inguinal adipose tissue. A pair-fed group was included to examine food intake-independent effects of KBP-336. RESULTS: A vehicle-corrected weight loss (23.4 ± 2.8%) was achieved with KBP-336, which was not observed to the same extent with the food-restricted weight loss (12.4 ± 2.8%) (P < 0.001). Maximal coupled respiration supported by carbohydrate and lipid-linked substrates was increased after KBP-336 treatment independent of food intake in pAT (P < 0.01). Moreover, oligomycin-induced leak respiration and the activity of citrate synthase and ß-hydroxyacetyl-CoA-dehydrogenase were increased with KBP-336 treatment (P < 0.05). These effects occurred without changes in mitochondrial content in pAT. CONCLUSIONS: These findings demonstrate favorable effects of KBP-336 on MRC in adipose tissue, indicating an increased energy expenditure and capacity to utilize fatty acids. Thus, providing more mechanistic insight into the DACRA-induced weight loss.

2.
Biomed Pharmacother ; 164: 114969, 2023 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-37269811

RESUMEN

Dual amylin and calcitonin receptor agonists (DACRAs) are known to induce significant weight loss as well as improve glucose tolerance, glucose control, and insulin action in rats. However, to what extent DACRAs affect insulin sensitivity beyond that induced by weight loss and if DACRAs affect glucose turnover including tissue-specific glucose uptake is still unknown. Hyperinsulinemic glucose clamp studies were carried out in pre-diabetic ZDSD and diabetic ZDF rats treated with either the DACRA KBP or the long-acting DACRA KBP-A for 12 days. The glucose rate of disappearance was assessed using 3-3H glucose and tissue-specific glucose uptake was evaluated using 14C-2-deoxy-D-glucose (14C-2DG). In diabetic ZDF rats, KBP treatment significantly reduced fasting blood glucose and improved insulin sensitivity independent of weight loss. Furthermore, KBP increased the rate of glucose clearance, likely by increasing glucose storage, but without altering the endogenous glucose production. This was confirmed in pre-diabetic ZDSD rats. Direct assessment of tissue-specific glucose uptake showed, that both KBP and KBP-A significantly increased glucose uptake in muscles. In summary, KBP treatment significantly improved insulin sensitivity in diabetic rats and markedly increased glucose uptake in muscles. Importantly, in addition to their well-established weight loss potential, the KBPs have an insulin-sensitizing effect independent of weight loss, highlighting DACRAs as promising agents for the treatment of type 2 diabetes and obesity.


Asunto(s)
Agonistas de los Receptores de Amilina , Diabetes Mellitus Experimental , Diabetes Mellitus Tipo 2 , Resistencia a la Insulina , Estado Prediabético , Ratas , Animales , Agonistas de los Receptores de Amilina/farmacología , Receptores de Calcitonina/agonistas , Polipéptido Amiloide de los Islotes Pancreáticos , Diabetes Mellitus Tipo 2/tratamiento farmacológico , Ratas Sprague-Dawley , Pérdida de Peso , Glucosa , Insulina , Hormonas y Agentes Reguladores de Calcio , Músculos , Glucemia
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...