Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
ACS Omega ; 9(15): 17646-17654, 2024 Apr 16.
Artículo en Inglés | MEDLINE | ID: mdl-38645309

RESUMEN

This study focuses on addressing the challenges in the dry reforming of propane, a process historically marked by low syngas yields and only moderate conversions of CO2 and propane. The primary objective was to enhance CO2 utilization and boost the selectivity of syngas (CO and H2) production using titania-based catalysts. For synthesizing these catalysts, an impregnation method was employed with subsequent characterization through X-ray diffraction (XRD), N2 adsorption-desorption, ammonia temperature-programmed desorption (TPD), and hydrogen temperature-programmed reduction (TPR). The titania-based catalysts generally possess weak acidic strength, with each catalyst displaying a unique reduction profile. The dry reforming process using these catalysts resulted in varying levels of propane conversion, with V/Ti, Ir/Ti, Al/Ti, and Zr/Ti catalysts showing distinct efficiencies. Notably, the Ir/Ti and V/Ti oxide catalysts achieved the lowest selectivity for generating intermediate byproducts such as methane, ethane, ethylene, and propylene while successfully promoting higher syngas CO and H2 production alongside stable propane conversion. When exposed to excess CO2, each catalyst consumed differing amounts of CO2 molecules. Particularly, the Ir/Ti and V/Ti oxide catalysts demonstrated enhanced activity in promoting CO2 reactions with intermediate radical species, facilitating carbon-carbon (C-C) bond dissociation and leading to increased syngas production. This study offers valuable insights into the potential of titania-based catalysts in improving the efficiency and selectivity of propane dry reforming processes for blue hydrogen.

2.
Chem Commun (Camb) ; 51(65): 12931-4, 2015 Aug 21.
Artículo en Inglés | MEDLINE | ID: mdl-26171991

RESUMEN

Methylcyclohexane (MCH)-toluene (TOL) chemical hydride cycles as hydrogen carrier systems are successful with the selective dehydrogenation of MCH to TOL, which has been achieved only using precious Pt-based catalysts. Herein, we report improved selectivity using non-precious metal nickel-based bimetallic catalysts, where the second metal occupies the unselective step sites.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...