Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Más filtros













Base de datos
Intervalo de año de publicación
1.
J Biol Chem ; 299(12): 105379, 2023 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-37871745

RESUMEN

Osteoclasts are specialized cells responsible for bone resorption, a highly energy-demanding process. Focus on osteoclast metabolism could be a key for the treatment of osteolytic diseases including osteoporosis. In this context, AMP-activated protein kinase α1 (AMPKα1), an energy sensor highly expressed in osteoclasts, participates in the metabolic reconfiguration during osteoclast differentiation and activation. This study aimed to elucidate the role of AMPKα1 during osteoclastogenesis in vitro and its impact in bone loss in vivo. Using LysMcre/0AMPK⍺1f/f animals and LysMcre/0 as control, we evaluated how AMPKα1 interferes with osteoclastogenesis and bone resorption activity in vitro. We found that AMPKα1 is highly expressed in the early stages of osteoclastogenesis. Genetic deletion of AMPKα1 leads to increased gene expression of osteoclast differentiation and fusion markers. In addition, LysMcre/0AMPK⍺1f/f mice had an increased number and size of differentiated osteoclast. Accordingly, AMPKα1 negatively regulates bone resorption in vitro, as evidenced by the area of bone resorption in LysMcre/0AMPK⍺1f/f osteoclasts. Our data further demonstrated that AMPKα1 regulates mitochondrial fusion and fission markers upregulating Mfn2 and downregulating DRP1 (dynamics-related protein 1) and that Ctskcre/0AMPK⍺1f/f osteoclasts lead to an increase in the number of mitochondria in AMPK⍺1-deficient osteoclast. In our in vivo study, femurs from Ctskcre/0AMPK⍺1f/f animals exhibited bone loss associated with the increased number of osteoclasts, and there was no difference between Sham and ovariectomized group. Our data suggest that AMPKα1 acts as a negative regulator of osteoclastogenesis, and the depletion of AMPKα1 in osteoclast leads to a bone loss state similar to that observed after ovariectomy.


Asunto(s)
Resorción Ósea , Osteoclastos , Animales , Femenino , Ratones , Resorción Ósea/genética , Resorción Ósea/metabolismo , Diferenciación Celular , Ratones Endogámicos C57BL , Osteoclastos/metabolismo , Osteogénesis , Osteoporosis/genética , Osteoporosis/metabolismo , Ligando RANK/metabolismo
2.
J Cachexia Sarcopenia Muscle ; 14(4): 1657-1669, 2023 08.
Artículo en Inglés | MEDLINE | ID: mdl-37243418

RESUMEN

BACKGROUND: Rheumatoid arthritis (RA) is an autoimmune disease that affects the joints, leading to chronic synovial inflammation and local tissue destruction. Extra-articular manifestations may also occur, such as changes in body composition. Skeletal muscle wasting is often observed in patients with RA, but methods for assessing loss of muscle mass are expensive and not widely available. Metabolomic analysis has shown great potential for identifying changes in the metabolite profile of patients with autoimmune diseases. In this setting, urine metabolomic profiling in patients with RA may be a useful tool to identify skeletal muscle wasting. METHODS: Patients aged 40-70 years with RA have been recruited according to the 2010 ACR/EULAR classification criteria. Further, the Disease Activity Score in 28 joints using the C-reactive protein level (DAS28-CRP) determined the disease activity. The muscle mass was measured by Dual X-ray absorptiometry (DXA) to generate the appendicular lean mass index (ALMI) by summing the lean mass measurements for both arms and legs and dividing them by height squared (kg/height2 ). Finally, urine metabolomic analysis by 1 H nuclear magnetic resonance (1 H-NMR) spectroscopy was performed and the metabolomics data set analysed using the BAYESIL and MetaboAnalyst software packages. Principal component analysis (PCA) and partial least squares-discriminant analysis (PLS-DA) were applied to the 1 H-NMR data, followed by Spearman's correlation analysis. The combined receiver operating characteristic curve (ROC) was calculated, as well as the logistic regression analyses to establish a diagnostic model. The significance level at P < 0.05 was set for all analyses. RESULTS: The total set of subjects investigated included 90 patients with RA. Most patients were women (86.7%), with a mean age of 56.5 ± 7.3 years old and a median DAS28-CRP of 3.0 (IQR 1.0-3.0). Fifteen metabolites were identified in the urine samples with high variable importance in projection (VIP scores) by MetaboAnalyst. Of these, dimethylglycine (r = 0.205; P = 0.053), oxoisovalerate (r = -0.203; P = 0.055), and isobutyric acid (r = -0.249; P = 0.018) were significantly correlated with ALMI. Based on the low muscle mass (ALMI ≤6.0 kg/m2 for women and ≤8.1 kg/m2 for men) a diagnostic model have been established with dimethylglycine (area under the curve [AUC] = 0.65), oxoisovalerate (AUC = 0.49), and isobutyric acid (AUC = 0.83) with significant sensitivity and specificity. CONCLUSIONS: Isobutyric acid, oxoisovalerate, and dimethylglycine from urine samples were associated with low skeletal muscle mass in patients with RA. These findings suggest that this group of metabolites may be further tested as biomarkers for identification of skeletal muscle wasting.


Asunto(s)
Artritis Reumatoide , Masculino , Humanos , Femenino , Persona de Mediana Edad , Artritis Reumatoide/diagnóstico , Biomarcadores/metabolismo , Atrofia Muscular/patología , Metabolómica/métodos , Inflamación/patología , Músculo Esquelético/patología
3.
J Pers Med ; 11(9)2021 Aug 26.
Artículo en Inglés | MEDLINE | ID: mdl-34575614

RESUMEN

There is no consensus for diagnosis or treatment of RA muscle loss. We aimed to investigate metabolites in arthritic mice urine as biomarkers of muscle loss. DBA1/J mice comprised collagen-induced arthritis (CIA) and control (CO) groups. Urine samples were collected at 0, 18, 35, 45, 55, and 65 days of disease and subjected to nuclear magnetic resonance spectroscopy. Metabolites were identified using Chenomx and Birmingham Metabolite libraries. The statistical model used principal component analysis, partial least-squares discriminant analysis, and partial least-squares regression analysis. Linear regression and Fisher's exact test via the MetaboAnalyst website were performed (VIP-score). Nearly 100 identified metabolites had CIA vs. CO and disease time-dependent differences (p < 0.05). Twenty-eight metabolites were muscle-associated: carnosine (VIPs 2.8 × 102) and succinyl acetone (VIPs 1.0 × 10) showed high importance in CIA vs. CO models at day 65; CIA pair analysis showed histidine (VIPs 1.2 × 102) days 55 vs. 65, histamine (VIPs 1.1 × 102) days 55 vs. 65, and L-methionine (VIPs 1.1 × 102) days 0 vs. 18. Carnosine was fatigue- (0.039) related, creatine was food intake- (-0.177) and body weight- (-0.039) related, and both metabolites were clinical score- (0.093; 0.050) and paw edema- (0.125; 0.026) related. Therefore, muscle metabolic alterations were detected in arthritic mice urine, enabling further validation in RA patient's urine, targeting prognosis, diagnosis, and monitoring of RA-mediated muscle loss.

4.
J Cachexia Sarcopenia Muscle ; 9(3): 603-612, 2018 06.
Artículo en Inglés | MEDLINE | ID: mdl-29575818

RESUMEN

BACKGROUND: Rheumatoid arthritis is characterized by chronic polyarticular synovitis and presents systemic changes that impact quality of life, such as impaired muscle function, seen in up to 66% of the patients. This can progress to severely debilitating state known as rheumatoid cachexia-without loss of fat mass and body weight-for which there is little consensus in terms of diagnosis or treatment. This study aims to evaluate whether the collagen-induced arthritis (CIA) animal model also develops clinical and functional features characteristic of rheumatoid cachexia. METHODS: Male DBA1/J mice were randomly divided into 2 groups: healthy animals (CO, n = 11) and CIA animals (n = 13). The clinical score and edema size, animal weight and food intake, free exploratory locomotion, grip strength, and endurance exercise performance were tested 0, 18, 35, 45, 55, and 65 days after disease induction. After euthanasia, several organs, visceral and brown fat, and muscles were dissected and weighed. Muscles were used to assess myofiber diameter. Ankle joint was used to assess arthritis severity by histological score. Statistical analysis were performed using one-way and two-way analyses of variance followed by Tukey's and Bonferroni's test or t-test of Pearson and statistical difference were assumed for a P value under 0.05. RESULTS: The CIA had significantly higher arthritis scores and larger hind paw edema volumes than CO. The CIA had decreased endurance exercise performance total time (fatigue; 23, 22, 24, and 21% at 35, 45, 55, and 65 days, respectively), grip strength (27, 55, 63, 60, and 66% at 25, 35, 45, 55, and 65 days, respectively), free locomotion (43, 57, 59, and 66% at 35, 45, 55, and 65 days, respectively), and tibialis anterior and gastrocnemius muscle weight (25 and 24%, respectively) compared with CO. Sarcoplasmic ratios were also reduced in CIA (TA: 23 and GA: 22% less sarcoplasmic ratio), confirming the atrophy of skeletal muscle mass in these animals than in CO. Myofiber diameter was also reduced 45% in TA and 41% in GA in CIA when compared with the CO. Visceral and brown fat were lighter in CIA (54 and 39%, respectively) than CO group. CONCLUSIONS: The CIA model is a valid experimental model for rheumatoid cachexia given that the clinical changes observed were similar to those described in patients with rheumatoid arthritis.


Asunto(s)
Artritis Experimental/patología , Artritis Reumatoide/patología , Caquexia/patología , Animales , Edema/patología , Pie/patología , Masculino , Ratones Endogámicos DBA , Músculo Esquelético/patología
5.
Biogerontology ; 14(4): 411-22, 2013 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-23820883

RESUMEN

Reproduction is a costly life process, and the reproductive investment by females appears to be greater than males in many species. We have analyzed the effects of reproductive investment during aging with respect to oxidative stress parameters in female Wistar rats. We measured the activity glutathione peroxidase, glutathione S-transferase, superoxide dismutase, consumption of hydrogen peroxide, protein carbonylation, lipid peroxidation, nitrite and nitrate levels, and Vitamin C (Vit. C) and E levels. We traced oxidative profiles at ages 3, 6, 12, and 24 months. Animals were grouped according to reproductive experience: experienced or naive with respect to reproductive activity. We measured aconitase activity and sex hormone levels. The naive animals exhibited an increase with respect to experienced in most parameters studied at 6 and 24 months, whereas experienced animals exhibited a similar increase at 3 and 12 months. At 6 months of age, during the period that would represent peak reproductive activity, naive animals showed higher levels of MDA, Vit. C, consumption of hydrogen peroxide and GPx, aconitase, and SOD activities. In naive elderly rats, we observed an increase in oxidative damage markers and an increase in enzymatic and non-enzymatic antioxidants, with the exception of consumption of hydrogen peroxide and Vit. C. In the long term, the reproductive investment was not sufficient to interfere with antioxidant capacity, and did not contribute to oxidative damage in kidneys of female Wistar rats.


Asunto(s)
Envejecimiento/metabolismo , Riñón/metabolismo , Estrés Oxidativo , Animales , Peso Corporal , Enzimas/metabolismo , Femenino , Humanos , Riñón/enzimología , Tamaño de los Órganos , Ratas , Ratas Wistar , Reproducción
6.
Exp Gerontol ; 46(10): 773-80, 2011 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-21619925

RESUMEN

Reproduction alters the male physiology. We performed a comprehensive examination of oxidative stress in the kidneys of male rats with (experienced) or without (naïve) reproductive activity during aging. Oxidative stress was assessed by measuring the activity of catalase, glutathione peroxidase, glutathione S-transferase, and superoxide dismutase, and by measuring protein carbonylation, lipid peroxidation, nitrite and nitrate levels, vitamin C levels, and glutathione (total, reduced, and oxidized forms) levels, and metabolism was accessed by aconitase activity in kidney tissue, as well as testosterone and estradiol levels in serum. Reproductively active animals exhibited increased testosterone levels and altered metabolism. Aging affects tissues and organs and contributes to their functional decline. Elderly naïve rats showed high nitrite and nitrate levels. The experienced rats had less damage in elderly ages, probably because they had higher antioxidant amount and antioxidant enzyme activities at earlier ages, which would have avoided oxidative damage seen in naïve group, and because of the metabolism decline. Glutathione increase in naïve elder rats probably was induced for direct protection against oxidative damage and indirect protection by higher glutathione peroxidase and glutathione S-transferase activities. Linear regression shows that lipid peroxidation levels explained vitamin C levels (B standardized value of 0.42), indicating that vitamin C was properly produced or recruited into kidneys to combat lipid peroxidation. Catalase activity reflected the protein carbonylation and lipid peroxidation levels (B standardized values of 0.28 and 0.48). These results add comprehensive data regarding changes in oxidative stress during aging, and suggest an explanation for the costs of reproduction.


Asunto(s)
Envejecimiento/metabolismo , Riñón/metabolismo , Estrés Oxidativo , Animales , Ácido Ascórbico/metabolismo , Catalasa/metabolismo , Estradiol/sangre , Glutatión/metabolismo , Glutatión Peroxidasa/metabolismo , Glutatión Transferasa/metabolismo , Riñón/enzimología , Modelos Lineales , Peroxidación de Lípido , Masculino , Nitratos/metabolismo , Nitritos/metabolismo , Carbonilación Proteica , Ratas , Ratas Wistar , Superóxido Dismutasa/metabolismo , Testosterona/sangre
7.
Mycopathologia ; 171(1): 35-41, 2011 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-20632209

RESUMEN

Resistance to the toxic effects of reactive oxygen species produced by phagocytes and production of hydrolytic enzymes are important aspects of Candida albicans virulence. In this report, we compared twelve C. albicans isolates for their in vitro capacity to resist oxidants-hydrogen peroxide, menadione and paraquat; and to produce hydrolytic enzymes-phospholipase and protease. Different C. albicans isolates showed different degrees of resistance to oxidants as well as differences in production of hydrolytic enzymes. Resistance to oxidative stress did not correlate with production of hydrolytic enzymes. This reinforces the view that C. albicans differentially regulates the expression of virulence factors in response to local environmental conditions.


Asunto(s)
Antifúngicos/toxicidad , Candida albicans/efectos de los fármacos , Candida albicans/enzimología , Farmacorresistencia Fúngica , Enzimas/metabolismo , Proteínas Fúngicas/metabolismo , Oxidantes/toxicidad , Peróxido de Hidrógeno/toxicidad , Hidrólisis , Pruebas de Sensibilidad Microbiana , Paraquat/toxicidad , Vitamina K 3/toxicidad
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA