Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 15 de 15
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
Bioorg Med Chem ; 28(20): 115716, 2020 10 15.
Artículo en Inglés | MEDLINE | ID: mdl-33069072

RESUMEN

A series of novel small-molecule pan-genotypic hepatitis C virus (HCV) NS5A inhibitors with picomolar activity containing 2-[(2S)-pyrrolidin-2-yl]-5-[4-(4-{2-[(2S)-pyrrolidin-2-yl]-1H-imidazol-5-yl}buta-1,3-diyn-1-yl)phenyl]-1H-imidazole core was designed based on molecular modeling study and SAR analysis. The constructed in silico model and docking study provide a deep insight into the binding mode of this type of NS5A inhibitors. Based on the predicted binding interface we have prioritized the most crucial diversity points responsible for improving antiviral activity. The synthesized molecules were tested in a cell-based assay, and compound 1.12 showed an EC50 value in the range of 2.9-34 pM against six genotypes of NS5A HCV, including gT3a, and demonstrated favorable pharmacokinetic profile in rats. This lead compound can be considered as an attractive candidate for further clinical evaluation.


Asunto(s)
Antivirales/farmacología , Hepacivirus/efectos de los fármacos , Imidazoles/farmacología , Proteínas no Estructurales Virales/antagonistas & inhibidores , Animales , Antivirales/síntesis química , Antivirales/química , Línea Celular Tumoral , Relación Dosis-Respuesta a Droga , Genotipo , Humanos , Imidazoles/síntesis química , Imidazoles/química , Masculino , Pruebas de Sensibilidad Microbiana , Modelos Moleculares , Estructura Molecular , Ratas , Ratas Sprague-Dawley , Relación Estructura-Actividad , Proteínas no Estructurales Virales/genética , Proteínas no Estructurales Virales/metabolismo , Replicación Viral/efectos de los fármacos , Replicación Viral/genética
2.
Bioorg Chem ; 100: 103900, 2020 07.
Artículo en Inglés | MEDLINE | ID: mdl-32428745

RESUMEN

Three new and complementary approaches to S-arylation of 2-thiohydantoins have been developed: copper-catalyzed cross coupling with either arylboronic acids or aryl iodides under mild conditions, or direct nucleophilic substitution in activated aryl halides. For 38 diverse compounds, reaction yields for all three methods have been determined. Selected by molecular docking, they have been tested on androgen receptor activation, and p53-Mdm2 regulation, and A549, MCF7, VA13, HEK293T, PC3, LnCAP cell lines for cytotoxicity, Two of them turned out to be promising as androgen receptor activators (likely by allosteric regulation), and another one is shown to activate the p53 cascade. It is hoped that 2-thiohydantoin S-arylidenes are worth further studies as biologically active compounds.


Asunto(s)
Andrógenos/química , Andrógenos/farmacología , Antineoplásicos/química , Antineoplásicos/farmacología , Tiohidantoínas/química , Tiohidantoínas/farmacología , Regulación Alostérica/efectos de los fármacos , Andrógenos/síntesis química , Antineoplásicos/síntesis química , Línea Celular Tumoral , Supervivencia Celular/efectos de los fármacos , Técnicas de Química Sintética , Células HEK293 , Humanos , Simulación del Acoplamiento Molecular , Neoplasias/tratamiento farmacológico , Neoplasias/metabolismo , Mapas de Interacción de Proteínas/efectos de los fármacos , Proteínas Proto-Oncogénicas c-mdm2/metabolismo , Receptores Androgénicos/metabolismo , Tiohidantoínas/síntesis química , Proteína p53 Supresora de Tumor/metabolismo
3.
Eur J Med Chem ; 189: 112064, 2020 Mar 01.
Artículo en Inglés | MEDLINE | ID: mdl-31972393

RESUMEN

Although a relatively wide range of therapeutic options is currently available for the treatment of HIV/AIDS, it is still among the most serious and virulent diseases and is associated with a high mortality rate. Integrase strand transfer inhibitors (INSTIs), e.g., FDA-approved dolutegravir (DTG), bictegravir (BIC) and cabotegravir (CAB), have recently been included in standard highly active antiretroviral therapy (HAART) schemes as one of the five major components responsible for the most beneficial clinical outcome. In this paper, we describe a combinatorial amide synthesis, biological evaluation and in silico modeling of new INSTIs containing heteroaromatic bioisosteric substitution instead of the well-studied halogen-substituted benzyl fragment. With the focus on the mentioned diversity point, a medium-sized library of compounds was selected for synthesis. A biological study revealed that many molecules were highly active INSTIs (EC50 < 10 nM). Two compounds 1{4} and 1{26} demonstrated picomolar antiviral activity that was comparable with CAB and were more active than DTG and BIC. Molecular docking study was performed to evaluate the binding mode of compounds in the active site of HIV-1 IN. In rats, lead compound 1{26} showed two-fold greater bioavailability than CAB and had a similar half-life. Compound 1{26} and its sodium salt were considerably more soluble in water than the parent drugs. Both molecules were very stable in human liver microsomes and plasma, demonstrated high affinity towards plasma proteins and did not show cytochrome (CYP) inhibition. This benefit profile indicates the great potential of these molecules as attractive candidates for subsequent evaluation as oral long-acting drugs and long-acting nanosuspension formulations for intramuscular injection.


Asunto(s)
Simulación por Computador , Infecciones por VIH/tratamiento farmacológico , Inhibidores de Integrasa VIH/síntesis química , Inhibidores de Integrasa VIH/farmacología , Integrasa de VIH/química , VIH-1/efectos de los fármacos , Modelos Moleculares , Oxazoles/síntesis química , Oxazoles/farmacología , Piridonas/síntesis química , Piridonas/farmacología , Animales , Infecciones por VIH/virología , Humanos , Masculino , Simulación del Acoplamiento Molecular , Mutación , Ratas , Ratas Sprague-Dawley , Replicación Viral
4.
Curr Drug Discov Technol ; 17(5): 716-724, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-31161993

RESUMEN

BACKGROUND: The key issue in the development of novel antimicrobials is a rapid expansion of new bacterial strains resistant to current antibiotics. Indeed, World Health Organization has reported that bacteria commonly causing infections in hospitals and in the community, e.g. E. Coli, K. pneumoniae and S. aureus, have high resistance vs the last generations of cephalosporins, carbapenems and fluoroquinolones. During the past decades, only few successful efforts to develop and launch new antibacterial medications have been performed. This study aims to identify new class of antibacterial agents using novel high-throughput screening technique. METHODS: We have designed library containing 125K compounds not similar in structure (Tanimoto coeff.< 0.7) to that published previously as antibiotics. The HTS platform based on double reporter system pDualrep2 was used to distinguish between molecules able to block translational machinery or induce SOS-response in a model E. coli system. MICs for most active chemicals in LB and M9 medium were determined using broth microdilution assay. RESULTS: In an attempt to discover novel classes of antibacterials, we performed HTS of a large-scale small molecule library using our unique screening platform. This approach permitted us to quickly and robustly evaluate a lot of compounds as well as to determine the mechanism of action in the case of compounds being either translational machinery inhibitors or DNA-damaging agents/replication blockers. HTS has resulted in several new structural classes of molecules exhibiting an attractive antibacterial activity. Herein, we report as promising antibacterials. Two most active compounds from this series showed MIC value of 1.2 (5) and 1.8 µg/mL (6) and good selectivity index. Compound 6 caused RFP induction and low SOS response. In vitro luciferase assay has revealed that it is able to slightly inhibit protein biosynthesis. Compound 5 was tested on several archival strains and exhibited slight activity against gram-negative bacteria and outstanding activity against S. aureus. The key structural requirements for antibacterial potency were also explored. We found, that the unsubstituted carboxylic group is crucial for antibacterial activity as well as the presence of bulky hydrophobic substituents at phenyl fragment. CONCLUSION: The obtained results provide a solid background for further characterization of the 5'- (carbonylamino)-2,3'-bithiophene-4'-carboxylate derivatives discussed herein as new class of antibacterials and their optimization campaign.


Asunto(s)
Antibacterianos/farmacología , Descubrimiento de Drogas , Ensayos Analíticos de Alto Rendimiento , Tiofenos/farmacología , Antibacterianos/química , Escherichia coli/efectos de los fármacos , Pruebas de Sensibilidad Microbiana , Staphylococcus aureus/efectos de los fármacos , Relación Estructura-Actividad , Tiofenos/química
5.
Mol Divers ; 24(1): 233-239, 2020 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-30949901

RESUMEN

A series of 5-oxo-4H-pyrrolo[3,2-b]pyridine derivatives was identified as novel class of highly potent antibacterial agents during an extensive large-scale high-throughput screening (HTS) program utilizing a unique double-reporter system-pDualrep2. The construction of the reporter system allows us to perform visual inspection of the underlying mechanism of action due to two genes-Katushka2S and RFP-which encode the proteins with different imaging signatures. Antibacterial activity of the compounds was evaluated during the initial HTS round and subsequent rescreen procedure. The most active molecule demonstrated a MIC value of 3.35 µg/mL against E. coli with some signs of translation blockage (low Katushka2S signal) and no SOS response. The compound did not demonstrate cytotoxicity in standard cell viability assay. Subsequent structural morphing and follow-up synthesis may result in novel compounds with a meaningful antibacterial potency which can be reasonably regarded as an attractive starting point for further in vivo investigation and optimization.


Asunto(s)
Antibacterianos/química , Antibacterianos/farmacología , Indolizinas/química , Piridinas/química , Supervivencia Celular , Evaluación Preclínica de Medicamentos , Ensayos Analíticos de Alto Rendimiento , Pruebas de Sensibilidad Microbiana , Relación Estructura-Actividad
6.
Comb Chem High Throughput Screen ; 22(6): 400-410, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-31573876

RESUMEN

INTRODUCTION: A variety of organic compounds has been reported to have antibacterial activity. However, antimicrobial resistance is one of the main problems of current anti-infective therapy, and the development of novel antibacterials is one of the main challenges of current drug discovery. METHODS: Using our previously developed dual-reporter High-Throughput Screening (HTS) platform, we identified a series of furanocoumarins as having high antibacterial activity. The construction of the reporter system allows us to differentiate three mechanisms of action for the active compounds: inhibition of protein synthesis (induction of Katushka2S), DNA damaging (induction of RFP) or other (inhibition of bacterial growth without reporter induction). RESULTS: Two primary hit-molecules of furanocoumarin series demonstrated relatively low MIC values comparable to that observed for Erythromycin (Ery) against E. coli and weakly induced both reporters. Dose-dependent translation inhibition was shown using in vitro luciferase assay, however it was not confirmed using C14-test. A series of close structure analogs of the identified hits was obtained and investigated using the same screening platform. Compound 19 was found to have slightly lower MIC value (15.18 µM) and higher induction of Katushka2S reporter in contrast to the parent structures. Moreover, translation blockage was clearly identified using both in vitro luciferase assay and C14 test. The standard cytotoxicity test revealed a relatively low cytotoxicity of the most active molecules. CONCLUSION: High antibacterial activity in combination with low cytotoxicity was demonstrated for a series of furanocoumarins. Further optimization of the described structures may result in novel and attractive lead compounds with promising antibacterial efficiency.


Asunto(s)
Antibacterianos/farmacología , Escherichia coli/efectos de los fármacos , Furocumarinas/farmacología , Biosíntesis de Proteínas/efectos de los fármacos , Células A549 , Antibacterianos/química , Células Cultivadas , Relación Dosis-Respuesta a Droga , Evaluación Preclínica de Medicamentos , Escherichia coli/crecimiento & desarrollo , Escherichia coli/metabolismo , Furocumarinas/química , Células HEK293 , Ensayos Analíticos de Alto Rendimiento , Humanos , Células MCF-7 , Estructura Molecular , Relación Estructura-Actividad
7.
Front Pharmacol ; 10: 913, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-31507413

RESUMEN

Many pharmaceutical companies are avoiding the development of novel antibacterials due to a range of rational reasons and the high risk of failure. However, there is an urgent need for novel antibiotics especially against resistant bacterial strains. Available in silico models suffer from many drawbacks and, therefore, are not applicable for scoring novel molecules with high structural diversity by their antibacterial potency. Considering this, the overall aim of this study was to develop an efficient in silico model able to find compounds that have plenty of chances to exhibit antibacterial activity. Based on a proprietary screening campaign, we have accumulated a representative dataset of more than 140,000 molecules with antibacterial activity against Escherichia coli assessed in the same assay and under the same conditions. This intriguing set has no analogue in the scientific literature. We applied six in silico techniques to mine these data. For external validation, we used 5,000 compounds with low similarity towards training samples. The antibacterial activity of the selected molecules against E. coli was assessed using a comprehensive biological study. Kohonen-based nonlinear mapping was used for the first time and provided the best predictive power (av. 75.5%). Several compounds showed an outstanding antibacterial potency and were identified as translation machinery inhibitors in vitro and in vivo. For the best compounds, MIC and CC50 values were determined to allow us to estimate a selectivity index (SI). Many active compounds have a robust IP position.

8.
Nat Biotechnol ; 37(9): 1038-1040, 2019 09.
Artículo en Inglés | MEDLINE | ID: mdl-31477924

RESUMEN

We have developed a deep generative model, generative tensorial reinforcement learning (GENTRL), for de novo small-molecule design. GENTRL optimizes synthetic feasibility, novelty, and biological activity. We used GENTRL to discover potent inhibitors of discoidin domain receptor 1 (DDR1), a kinase target implicated in fibrosis and other diseases, in 21 days. Four compounds were active in biochemical assays, and two were validated in cell-based assays. One lead candidate was tested and demonstrated favorable pharmacokinetics in mice.


Asunto(s)
Aprendizaje Profundo , Receptor con Dominio Discoidina 1/antagonistas & inhibidores , Receptor con Dominio Discoidina 1/metabolismo , Evaluación Preclínica de Medicamentos/métodos , Animales , Receptor con Dominio Discoidina 1/genética , Perros , Inhibidores Enzimáticos , Humanos , Ratones , Microsomas Hepáticos/metabolismo , Modelos Moleculares , Estructura Molecular , Conformación Proteica , Ratas
9.
J Antibiot (Tokyo) ; 72(11): 827-833, 2019 11.
Artículo en Inglés | MEDLINE | ID: mdl-31358913

RESUMEN

The present report describes our efforts to identify new structural classes of compounds having promising antibacterial activity using previously published double-reporter system pDualrep2. This semi-automated high-throughput screening (HTS) platform has been applied to perform a large-scale screen of a diverse small-molecule compound library. We have selected a set of more than 125,000 molecules and evaluated them for their antibacterial activity. On the basis of HTS results, eight compounds containing 2-pyrazol-1-yl-thiazole scaffold exhibited moderate-to-high activity against ΔTolC Escherichia coli. Minimum inhibitory concentration (MIC) values for these molecules were in the range of 0.037-8 µg ml-1. The most active compound 8 demonstrated high antibacterial potency (MIC = 0.037 µg ml-1), that significantly exceed that measured for erythromycin (MIC = 2.5 µg ml-1) and was comparable with the activity of levofloxacin (MIC = 0.016 µg ml-1). Unfortunately, this compound showed only moderate selectivity toward HEK293 eukaryotic cell line. On the contrary, compound 7 was less potent (MIC = 0.8 µg ml-1) but displayed only slight cytotoxicity. Thus, 2-pyrazol-1-yl-thiazoles can be considered as a valuable starting point for subsequent optimization and morphing.


Asunto(s)
Antibacterianos/farmacología , Ensayos Analíticos de Alto Rendimiento/métodos , Tiazoles/farmacología , Antibacterianos/química , Línea Celular Tumoral , Supervivencia Celular/efectos de los fármacos , Humanos , Pruebas de Sensibilidad Microbiana , Estructura Molecular , Tiazoles/química
10.
J Med Chem ; 62(22): 10026-10043, 2019 11 27.
Artículo en Inglés | MEDLINE | ID: mdl-31188596

RESUMEN

The paradigm of "drug-like-ness" dramatically altered the behavior of the medicinal chemistry community for a long time. In recent years, scientists have empirically found a significant increase in key properties of drugs that have moved structures closer to the periphery or the outside of the rule-of-five "cage". Herein, we show that for the past decade, the number of molecules claimed in patent records by major pharmaceutical companies has dramatically decreased, which may lead to a "chemical singularity". New compounds containing fragments with increased 3D complexity are generally larger, slightly more lipophilic, and more polar. A core difference between this study and recently published papers is that we consider the nature and quality of sp3-rich frameworks rather than sp3 count. We introduce the original descriptor MCE-18, which stands for medicinal chemistry evolution, 2018, and this measure can effectively score molecules by novelty in terms of their cumulative sp3 complexity.


Asunto(s)
Química Farmacéutica/métodos , Química Farmacéutica/tendencias , Preparaciones Farmacéuticas/química , Algoritmos , Bases de Datos Farmacéuticas , Diseño de Fármacos , Evaluación Preclínica de Medicamentos/métodos , Industria Farmacéutica/estadística & datos numéricos , Estructura Molecular , Terapia Molecular Dirigida/métodos , Patentes como Asunto , Farmacología , Mapas de Interacción de Proteínas/efectos de los fármacos
11.
Comb Chem High Throughput Screen ; 22(5): 346-354, 2019 08 08.
Artículo en Inglés | MEDLINE | ID: mdl-30987560

RESUMEN

AIM AND OBJECTIVE: Antibiotic resistance is a serious constraint to the development of new effective antibacterials. Therefore, the discovery of the new antibacterials remains one of the main challenges in modern medicinal chemistry. This study was undertaken to identify novel molecules with antibacterial activity. MATERIALS AND METHODS: Using our unique double-reporter system, in-house large-scale HTS campaign was conducted for the identification of antibacterial potency of small-molecule compounds. The construction allows us to visually assess the underlying mechanism of action. After the initial HTS and rescreen procedure, luciferase assay, C14-test, determination of MIC value and PrestoBlue test were carried out. RESULTS: HTS rounds and rescreen campaign have revealed the antibacterial activity of a series of Nsubstituted triazolo-azetidines and their isosteric derivatives that has not been reported previously. Primary hit-molecule demonstrated a MIC value of 12.5 µg/mL against E. coli Δ tolC with signs of translation blockage and no SOS-response. Translation inhibition (26%, luciferase assay) was achieved at high concentrations up to 160 µg/mL, while no activity was found using C14-test. The compound did not demonstrate cytotoxicity in the PrestoBlue assay against a panel of eukaryotic cells. Within a series of direct structural analogues bearing the same or bioisosteric scaffold, compound 2 was found to have an improved antibacterial potency (MIC=6.25 µg/mL) close to Erythromycin (MIC=2.5-5 µg/mL) against the same strain. In contrast to the parent hit, this compound was more active and selective, and provided a robust IP position. CONCLUSION: N-substituted triazolo-azetidine scaffold may be used as a versatile starting point for the development of novel active and selective antibacterial compounds.


Asunto(s)
Antibacterianos/química , Azetidinas/farmacología , Antibacterianos/farmacología , Azetidinas/química , Escherichia coli/efectos de los fármacos , Pruebas de Sensibilidad Microbiana , Biosíntesis de Proteínas/efectos de los fármacos , Triazoles/química
12.
Expert Opin Ther Pat ; 27(4): 401-414, 2017 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-27967269

RESUMEN

INTRODUCTION: Non-structural 5A (NS5A) protein has achieved a considerable attention as an attractive target for the treatment of hepatitis C (HCV). A number of novel NS5A inhibitors have been reported to date. Several drugs having favorable ADME properties and mild side effects were launched into the pharmaceutical market. For instance, daclatasvir was launched in 2014, elbasvir is currently undergoing registration, ledipasvir was launched in 2014 as a fixed-dose combination with sofosbuvir (NS5B inhibitor). Areas covered: Thomson integrity database and SciFinder database were used as a valuable source to collect the patents on small-molecule NS5A inhibitors. All the structures were ranked by the date of priority. Patent holder and antiviral activity for each scaffold claimed were summarized and presented in a convenient manner. A particular focus was placed on the best-in-class bis-pyrrolidine-containing NS5A inhibitors. Expert opinion: Several first generation NS5A inhibitors have recently progressed into advanced clinical trials and showed superior efficacy in reducing viral load in infected subjects. Therapy schemes of using these agents in combination with other established antiviral drugs with complementary mechanisms of action can address the emergence of resistance and poor therapeutic outcome frequently attributed to antiviral drugs.


Asunto(s)
Antivirales/farmacología , Hepatitis C/tratamiento farmacológico , Proteínas no Estructurales Virales/antagonistas & inhibidores , Diseño de Fármacos , Farmacorresistencia Viral , Hepacivirus/efectos de los fármacos , Hepatitis C/virología , Humanos , Patentes como Asunto
13.
J Drug Target ; 24(8): 679-93, 2016 09.
Artículo en Inglés | MEDLINE | ID: mdl-26887438

RESUMEN

Prostate cancer (PC) is the prevalent malignancy widespread among men in the Western World. Prostate specific membrane antigen (PSMA) is an established PC marker and has been considered as a promising biological target for anti-PC drug delivery and diagnostics. The protein was found to be overexpressed in PC cells, including metastatic, and the neovasculature of solid tumors. These properties make PSMA-based approach quite appropriate for effective PC imaging and specific drug therapy. Through the past decade, a variety of PSMA-targeted agents has been systematically evaluated. Small-molecule compounds have several advantages over other classes, such as improved pharmacokinetics and rapid blood clearance. These low-weight ligands have similar structure and can be divided into three basic categories in accordance with the type of their zinc-binding core-head. Several PSMA binders are currently undergoing clinical trials generally for PC imaging. The main goal of the present review is to describe the recent progress achieved within the title field and structure activity relationships (SAR) disclosed for different PSMA ligands. Recent in vitro and in vivo studies for each type of the compounds described have also been briefly summarized.


Asunto(s)
Antígenos de Superficie/metabolismo , Portadores de Fármacos/química , Glutamato Carboxipeptidasa II/metabolismo , Neoplasias de la Próstata/tratamiento farmacológico , Bibliotecas de Moléculas Pequeñas/química , Sitios de Unión , Portadores de Fármacos/farmacocinética , Humanos , Ligandos , Masculino , Estructura Molecular , Terapia Molecular Dirigida , Neoplasias de la Próstata/metabolismo , Unión Proteica , Bibliotecas de Moléculas Pequeñas/farmacocinética , Relación Estructura-Actividad
14.
Curr Top Med Chem ; 16(12): 1383-91, 2016.
Artículo en Inglés | MEDLINE | ID: mdl-26585932

RESUMEN

In recent years, nonstructural protein 5A (NS5A) has rapidly emerged as a promising therapeutic target for Hepatitis C (HCV) virus therapy. It is involved in both viral RNA replication and virus assembly and NS5A plays a critical role in the regulation of HCV life cycle. NS5A replication complex inhibitors (NS5A RCIs) have demonstrated strong antiviral activity in vitro and in vivo. However, wild-type resistance mutations and a wide range of genotypes significantly reduce their clinical efficacy. The exact mechanism of NS5A action still remains elusive, therefore several in silico models have been constructed to gain insight into the drug binding and subsequent structural optimization to overcome resistance. This paper provides a comprehensive overview of the computational studies towards NS5A mechanism of action and the design of novel small-molecule inhibitors.


Asunto(s)
Antivirales/farmacología , Simulación por Computador , Diseño de Fármacos , Hepacivirus/efectos de los fármacos , Bibliotecas de Moléculas Pequeñas/farmacología , Proteínas no Estructurales Virales/antagonistas & inhibidores , Animales , Antivirales/síntesis química , Antivirales/química , Humanos , Pruebas de Sensibilidad Microbiana , Modelos Moleculares , Conformación Molecular , Bibliotecas de Moléculas Pequeñas/síntesis química , Bibliotecas de Moléculas Pequeñas/química , Replicación Viral/efectos de los fármacos
15.
Curr Top Med Chem ; 16(12): 1372-82, 2016.
Artículo en Inglés | MEDLINE | ID: mdl-26585933

RESUMEN

Non-structural 5A (NS5A) protein plays a crucial role in the replication of hepatitis C virus (HCV) and during the past decade has attracted increasing attention as a promising biological target for the treatment of viral infections and related disorders. Small-molecule NS5A inhibitors have shown significant antiviral activity in vitro and in vivo. Several lead molecules are reasonably regarded as novel highly potent drug candidates with favorable ADME features and tolerable side effects. The first-in-class daclatasvir has recently been launched into the market and 14 novel molecules are currently under evaluation in clinical trials. From this perspective, we provide an overview of the available chemical space of small-molecule NS5A inhibitors and their PK properties, mainly focusing on the diversity in structure and scaffold representation.


Asunto(s)
Antivirales/química , Antivirales/farmacología , Hepacivirus/efectos de los fármacos , Bibliotecas de Moléculas Pequeñas/química , Bibliotecas de Moléculas Pequeñas/farmacología , Proteínas no Estructurales Virales/antagonistas & inhibidores , Animales , Antivirales/síntesis química , Hepacivirus/metabolismo , Humanos , Pruebas de Sensibilidad Microbiana , Conformación Molecular , Bibliotecas de Moléculas Pequeñas/síntesis química , Replicación Viral/efectos de los fármacos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...