Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
Transl Stroke Res ; 15(2): 446-461, 2024 04.
Artículo en Inglés | MEDLINE | ID: mdl-36689081

RESUMEN

Vascular cognitive impairment and dementia (VCID) are a growing threat to public health without any known treatment. The bilateral common carotid artery stenosis (BCAS) mouse model is valid for VCID. Previously, we have reported that remote ischemic postconditioning (RIPostC) during chronic cerebral hypoperfusion (CCH) induced by BCAS increases cerebral blood flow (CBF), improves cognitive function, and reduces white matter damage. We hypothesized that physical exercise (EXR) would augment CBF during CCH and prevent cognitive impairment in the BCAS model. BCAS was performed in C57/B6 mice of both sexes to establish CCH. One week after the BCAS surgery, mice were randomized to treadmill exercise once daily or no EXR for four weeks. CBF was monitored with an LSCI pre-, post, and 4 weeks post-BCAS. Cognitive testing was performed for post-BCAS after exercise training, and brain tissue was harvested for histopathology and biochemical test. BCAS led to chronic hypoperfusion resulting in impaired cognitive function and other functional outcomes. Histological examination revealed that BCAS caused changes in neuronal morphology and cell death in the cortex and hippocampus. Immunoblotting showed that BCAS was associated with a significant downregulate of AMPK and pAMPK and NOS3 and pNOS3. BCAS also decreased red blood cell (RBC) deformability. EXR therapy increased and sustained improved CBF and cognitive function, muscular strength, reduced cell death, and loss of white matter. EXR is effective in the BCAS model, improving CBF and cognitive function, reducing white matter damage, improving RBC deformability, and increasing RBC NOS3 and AMPK. The mechanisms by which EXR improves CBF and attenuates tissue damage need further investigation.


Asunto(s)
Isquemia Encefálica , Disfunción Cognitiva , Demencia Vascular , Animales , Ratones , Proteínas Quinasas Activadas por AMP , Isquemia Encefálica/complicaciones , Isquemia Encefálica/terapia , Circulación Cerebrovascular/fisiología , Disfunción Cognitiva/terapia , Disfunción Cognitiva/complicaciones , Demencia Vascular/etiología , Demencia Vascular/terapia , Demencia Vascular/patología , Modelos Animales de Enfermedad
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...