Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
Angew Chem Int Ed Engl ; 62(47): e202311373, 2023 Nov 20.
Artículo en Inglés | MEDLINE | ID: mdl-37748032

RESUMEN

The introduction of the water-in-salt (WIS) electrolytes concept to prevent water splitting and widen the electrochemical stability window, has spurred extensive research efforts toward development of improved aqueous batteries. The successful implementation of these electrolyte solutions in many electrochemical systems shifts the focus from diluted to WIS electrolyte solutions. Considering the high costs and the tendency of these nearly saturated solutions to crystallize, this trend can be carefully re-evaluated. Herein we show that the stability of organic electrodes comprising the active material perylene-3,4,9,10-tetracarboxylic dianhydride (PTCDA), is strongly influenced by the solvation character of the anions rather than the concentration of the electrolyte solution. Even though the charging process of PTCDA involves solely insertion of cations (i.e., principal counter-ions), surprisingly, the dominant factor influencing its electrochemical performance, including long-term electrode stability, is the type of the co-ions (i.e., electrolytic anions). Using systematic electrochemical analysis combined with theoretical simulations, we show that the selection of kosmotropic anions results in fast fading of the PTCDA anodes, while a selection of chaotropic anions leads to excellent stability, even at electrolytes concentrations as low as 0.2 M. These findings provide a new conceptual approach for designing advanced electrolyte solutions for aqueous batteries.

2.
J Phys Chem Lett ; 14(2): 437-444, 2023 Jan 19.
Artículo en Inglés | MEDLINE | ID: mdl-36622789

RESUMEN

Nonaqueous rechargeable Li-O2 batteries are recognized as possible alternatives to the currently established Li-ion battery technology for next-generation traction by virtue of their high specific energy. However, the technology is still far from commercial realization mainly due to the performance-limiting reactions at the cathode. The insulating discharge product, Li2O2, can passivate the cathode leading to issues such as low specific capacity and early cell death. Herein, the -OH functionalities at the cathode, incorporated by polysaccharide addition, are shown to enhance the discharge capacity and cyclability. The -OH functional group (high pKa) at the cathode helps to stabilize the intermediate, LiO2, via an energetically favorable pathway and delays the precipitation to Li2O2, without any parasitic reaction, unlike the other reported low pKa additives. The role of the functionalities is studied using various experimental techniques and first principles density functional theory based studies. This approach provides a rational design route for the cathodes that provide high capacities for the emergent Li-O2 batteries.

3.
iScience ; 25(8): 104835, 2022 Aug 19.
Artículo en Inglés | MEDLINE | ID: mdl-35992077

RESUMEN

Herein, with the help of experimental and first-principles density functional theory (DFT)-based studies, we have shown that structural changes in the water coordination in electrolytes having high alkalinity can be a possible reason for the reduced catalytic activity of platinum (Pt) in high pH. Studies with polycrystalline Pt electrodes indicate that electrocatalytic HER activity reduces in terms of high overpotential required, high Tafel slope, and high charge transfer resistances in concentrated aqueous alkaline electrolytes (say 6 M KOH) in comparison to that in low alkaline electrolytes (say 0.1 M KOH), irrespective of the counter cations (Na+, K+, or Rb+) present. The changes in the water structure of bulk electrolytes as well as that in electrode-electrolyte interface are studied. The results are compared with DFT-based analysis, and the study can pave new directions in studying the HER process in terms of the water structure near the electrode-electrolyte interface.

4.
Phys Chem Chem Phys ; 23(41): 23967-23977, 2021 Oct 27.
Artículo en Inglés | MEDLINE | ID: mdl-34661231

RESUMEN

Electronic structure calculations based on density functional theory are used to identify the catalytically active sites for the hydrogen evolution reaction on single layers of the two transition metal tri-chalcogenide compounds CoPS3 and NiPS3. Some of the under-coordinated P and S atoms at the edges are found to act as the active sites, the details of which depend on the coverage of H on the electrode. Overpotentials along the two possible pathways for HER are also estimated for the two materials. These findings not only resolve an apparent discrepancy between published experimental results and our earlier calculations, but also provide insights which can be used to enhance catalytic efficiency of these materials further.

5.
ACS Appl Mater Interfaces ; 13(28): 33112-33122, 2021 Jul 21.
Artículo en Inglés | MEDLINE | ID: mdl-34247478

RESUMEN

Tweaking the electrolyte of the anode compartment of zinc-air battery (ZAB) system is shown to be extending the charge-discharge cyclability of the cell. An alkaline zinc (Zn)-air cell working for ∼32 h (192 cycles) without failure is extended to >55 h (>330 cycles) by modifying the anode compartment with a mixture electrolyte of KOH and LiOH. The cell containing the mixture electrolyte has a low overpotential for charging along with high discharge capacity. The role of Li+ ions in tuning the electrode morphology and electrodics is studied both theoretically and experimentally. The synergistic effect of Li+ and K+ ions in the electrolyte on improved ZAB performance is proven. This study can pave new ways for the commercial implementation of ZAB, where it has already proven its potential in low-cost, high energy density, and mobility applications.

6.
J Phys Chem Lett ; 11(9): 3192-3197, 2020 May 07.
Artículo en Inglés | MEDLINE | ID: mdl-32250632

RESUMEN

Recent experiments showed that some layered ternary transition metal trichalcogenide compounds are efficient catalysts for the hydrogen evolution reaction (HER). Motivated by these, we have combinatorially designed and computationally screened, through an efficient, automated approach based on density functional theory, single layers of such compounds, including those not reported in widely used crystal structure database like the International Crystal Structure Database (ICSD), for their efficiency as HER catalysts. On the basis of our theoretical prediction of overpotentials determined from the reaction coordinate mapping corresponding to the HER mechanism, 13 of these compounds are found to be promising catalysts, out of which three are suggested to be as efficient as platinum, the best known HER catalyst to date.

7.
Phys Chem Chem Phys ; 22(17): 9233-9239, 2020 May 07.
Artículo en Inglés | MEDLINE | ID: mdl-32307466

RESUMEN

Details of the formation and dissociation of the first layer of Li2O2 on the α-MnO2(100) surface as the cathode in Li-air batteries have been studied using first principles density functional theory. The bias dependence of the electrochemical steps of charge (Li2O2 dissociation) and discharge (Li2O2 formation) via two different mechanisms has been studied. Discharge potential is found to be 2.94 V for the mechanism in which O2 adsorption is followed by lithiation. Charging potential for the reverse process is 3.37 V, giving an overpotential of 0.43 V, which is much lower than that on carbon electrodes. This is also in good agreement with experiments on α-MnO2 cathodes. In Li2O2 formation via the disproportionation of two LiO2 adsorbates, a maximum discharge potential of 2.61 V and a minimum charging potential of 3.48 V are obtained. The minimum energy pathway in this mechanism has a moderate kinetic barrier of 0.57 eV. Charging potentials of 3.37 V and 3.48 V imply that the typical charging potentials applied in the experiments (∼3.8 V) will dissociate the entire Li2O2 layer. These findings explain why α-MnO2 performs so well as a catalyst in Li-air battery cathodes, and suggest that a larger area of α-MnO2(100) can help reduce capacity loss.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...