Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
Differentiation ; 131: 59-73, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37167859

RESUMEN

SF3B proteins form a heptameric complex in the U2 small nuclear ribonucleoprotein, essential for pre-mRNA splicing. Heterozygous pathogenic variants in human SF3B4 are associated with head, face, limb, and vertebrae defects. Using the CRISPR/Cas9 system, we generated mice with constitutive heterozygous deletion of Sf3b4 and showed that mutant embryos have abnormal vertebral development. Vertebrae abnormalities were accompanied by changes in levels and expression pattern of Hox genes in the somites. RNA sequencing analysis of whole embryos and somites of Sf3b4 mutant and control litter mates revealed increased expression of other Sf3b4 genes. However, the mutants exhibited few differentially expressed genes and a large number of transcripts with differential splicing events (DSE), predominantly increased exon skipping and intron retention. Transcripts with increased DSE included several genes involved in chromatin remodeling that are known to regulate Hox expression. Our study confirms that Sf3b4 is required for normal vertebrae development and shows, for the first time, that like Sf3b1, Sf3b4 also regulates Hox expression. We propose that abnormal splicing of chromatin remodelers is primarily responsible for vertebral defects found in Sf3b4 heterozygous mutant embryos.


Asunto(s)
Cromatina , Empalme del ARN , Humanos , Animales , Ratones , Factores de Empalme de ARN/genética , Factores de Empalme de ARN/metabolismo , Empalme del ARN/genética , Factores de Transcripción/genética , Genes Homeobox
2.
Dis Model Mech ; 15(6)2022 06 01.
Artículo en Inglés | MEDLINE | ID: mdl-35593225

RESUMEN

Heterozygous mutations in SNRPB, an essential core component of the five small ribonucleoprotein particles of the spliceosome, are responsible for cerebrocostomandibular syndrome (CCMS). We show that Snrpb heterozygous mouse embryos arrest shortly after implantation. Additionally, heterozygous deletion of Snrpb in the developing brain and neural crest cells models craniofacial malformations found in CCMS, and results in death shortly after birth. RNAseq analysis of mutant heads prior to morphological defects revealed increased exon skipping and intron retention in association with increased 5' splice site strength. We found increased exon skipping in negative regulators of the P53 pathway, along with increased levels of nuclear P53 and P53 target genes. However, removing Trp53 in Snrpb heterozygous mutant neural crest cells did not completely rescue craniofacial development. We also found a small but significant increase in exon skipping of several transcripts required for head and midface development, including Smad2 and Rere. Furthermore, mutant embryos exhibited ectopic or missing expression of Fgf8 and Shh, which are required to coordinate face and brain development. Thus, we propose that mis-splicing of transcripts that regulate P53 activity and craniofacial-specific genes contributes to craniofacial malformations. This article has an associated First Person interview with the first author of the paper.


Asunto(s)
Anomalías Craneofaciales , Micrognatismo , Animales , Anomalías Craneofaciales/genética , Humanos , Discapacidad Intelectual , Ratones , Micrognatismo/genética , Morfogénesis , Cresta Neural , Costillas/anomalías , Proteína p53 Supresora de Tumor/genética , Proteínas Nucleares snRNP
3.
Dev Dyn ; 249(8): 924-945, 2020 08.
Artículo en Inglés | MEDLINE | ID: mdl-32315467

RESUMEN

Mutations in core components of the spliceosome are responsible for a group of syndromes collectively known as spliceosomopathies. Patients exhibit microcephaly, micrognathia, malar hypoplasia, external ear anomalies, eye anomalies, psychomotor delay, intellectual disability, limb, and heart defects. Craniofacial malformations in these patients are predominantly found in neural crest cells-derived structures of the face and head. Mutations in eight genes SNRPB, RNU4ATAC, SF3B4, PUF60, EFTUD2, TXNL4, EIF4A3, and CWC27 are associated with craniofacial spliceosomopathies. In this review, we provide a brief description of the normal development of the head and the face and an overview of mutations identified in genes associated with craniofacial spliceosomopathies. We also describe a model to explain how and when these mutations are most likely to impact neural crest cells. We speculate that mutations in a subset of core splicing factors lead to disrupted splicing in neural crest cells because these cells have increased sensitivity to inefficient splicing. Hence, disruption in splicing likely activates a cellular stress response that includes increased skipping of regulatory exons in genes such as MDM2 and MDM4, key regulators of P53. This would result in P53-associated death of neural crest cells and consequently craniofacial malformations associated with spliceosomopathies.


Asunto(s)
Anomalías Craneofaciales/genética , Discapacidad Intelectual/genética , Trastornos Psicomotores/genética , Empalmosomas/fisiología , Animales , Proteínas de Ciclo Celular/genética , Atresia de las Coanas/genética , Ciclofilinas/genética , ARN Helicasas DEAD-box/genética , Sordera/congénito , Sordera/genética , Modelos Animales de Enfermedad , Factor 4A Eucariótico de Iniciación/genética , Exones , Facies , Cardiopatías Congénitas/genética , Humanos , Ratones , Microcefalia/genética , Micrognatismo/genética , Mutación , Cresta Neural/citología , Cresta Neural/metabolismo , Células Neuroepiteliales/metabolismo , Proteínas Proto-Oncogénicas/genética , Proteínas Proto-Oncogénicas c-mdm2/genética , Factores de Empalme de ARN/genética , Ribonucleoproteína Nuclear Pequeña U5/genética , Síndrome , Proteína p53 Supresora de Tumor/genética
4.
Commun Biol ; 2: 375, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-31633066

RESUMEN

Synaptosomal-associated protein 29 (SNAP29) encodes a member of the SNARE family of proteins implicated in numerous intracellular protein trafficking pathways. SNAP29 maps to the 22q11.2 region and is deleted in 90% of patients with 22q11.2 deletion syndrome (22q11.2DS). Moreover, bi-allelic SNAP29 mutations in patients are responsible for CEDNIK (cerebral dysgenesis, neuropathy, ichthyosis, and keratoderma) syndrome. A mouse model that recapitulates abnormalities found in these syndromes is essential for uncovering the cellular basis of these disorders. In this study, we report that mice with a loss of function mutation of Snap29 on a mixed CD1;FvB genetic background recapitulate skin abnormalities associated with CEDNIK, and also phenocopy neurological and ophthalmological abnormalities found in CEDNIK and a subset of 22q11.2DS patients. Our work also reveals an unanticipated requirement for Snap29 in male fertility and supports contribution of hemizygosity for SNAP29 to the phenotypic spectrum of abnormalities found in 22q11.2DS patients.


Asunto(s)
Síndrome de DiGeorge/genética , Queratodermia Palmoplantar/genética , Síndromes Neurocutáneos/genética , Proteínas Qb-SNARE/deficiencia , Proteínas Qb-SNARE/genética , Proteínas Qc-SNARE/deficiencia , Proteínas Qc-SNARE/genética , Animales , Síndrome de DiGeorge/patología , Síndrome de DiGeorge/fisiopatología , Modelos Animales de Enfermedad , Anomalías del Ojo/genética , Anomalías del Ojo/patología , Femenino , Regulación del Desarrollo de la Expresión Génica , Hemicigoto , Humanos , Infertilidad Masculina/genética , Infertilidad Masculina/patología , Queratodermia Palmoplantar/patología , Queratodermia Palmoplantar/fisiopatología , Mutación con Pérdida de Función , Masculino , Ratones , Ratones Noqueados , Ratones Mutantes , Malformaciones del Sistema Nervioso/genética , Malformaciones del Sistema Nervioso/patología , Síndromes Neurocutáneos/patología , Síndromes Neurocutáneos/fisiopatología , Fenotipo , Embarazo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...