Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 12 de 12
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
Heliyon ; 9(11): e21349, 2023 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-37954283

RESUMEN

In this paper, we investigate the potential use of Zeolitic Imidazolate Frameworks (ZIF-8) as a sensing material for CO2 detection. Three synthesis techniques are considered for the preparation of ZIF-8, namely room temperature, microwave-assisted, and ball milling. The latter is a green and facile alternative for synthesis with its solvent-free, room-temperature operation. In addition, ball milling produces ZIF-8 samples with superior CO2 adsorption and detection characteristics, as concluded from fluorescence measurements. Characterization tests including X-ray diffraction (XRD), Fourier transform infrared (FTIR), Thermogravimetric analysis (TGA), Field emission scanning electron microscopy (FE-SEM) and Energy-dispersive X-ray spectroscopy (EDS) are conducted to inspect the structural morphology, the thermal stability, and elements content of the ZIF-8 samples obtained from the different aforementioned synthesis techniques. The characterization tests revealed the appearance of a new phase of ZIF-8 which is ZIF-L when deploying the ball milling technique with different structure, morphology, response to CO2 exposure and thermal stability when compared to its counterparts. Fluorescence measurements are carried out to evaluate the limit of detection (LOD), selectivity, and recyclability of the different ZIF-8 samples. The LOD of the ZIF-8 sample synthesized based on ball milling synthesis technique is 815.2 ppm, while LODs of the samples obtained from microwave and room temperature-based synthesis techniques are 1780.6 ppm and 723.8 ppm, respectively. This indicates that the room temperature and ball milling produced MOFs have comparable LODs. However, the room temperature procedure requires the use of a harmful solvent. The range of LOD demonstrates the suitable use of ZIF-8 for indoor air quality monitoring and other industrial applications.

2.
Sci Rep ; 13(1): 15303, 2023 Sep 15.
Artículo en Inglés | MEDLINE | ID: mdl-37715011

RESUMEN

There are numerous reports and publications in reputable scientific and engineering journals that attribute substantial enhancement in heat transfer capabilities for heat exchangers once they employ nanofluids as working fluids. By definition, a nanofluid is a working fluid that has a small volume fraction (5% or less) of a solid particle with dimensions in the nanoscale. The addition of this solid material has a reported significant impact on convective heat transfer in heat exchangers. This work investigates the significance of the reported enhancements in many recent related publications. Observations on these publications' geographical origins, fundamental heat transfer calculations, experimental setups and lack of potential applications are critically made. Heat transfer calculations based on methodologies outlined in random selection of available papers were conducted along with a statistical analysis show paradoxically inconsistent conclusion as well as an apparent lack of complete comprehension of convective heat transfer mechanism. In some of the surveyed literature for example, heat transfer coefficient enhancements were reported to be up to 27% and 48%, whereas the recalculations presented in this work restrain proclaimed enactments to ~ 3.5% and - 4% (no enhancement), respectively. This work aims at allowing a healthy scientific debate on whether nanofluids are the sole answer to enhancing convective heat transfer in heat exchangers. The quantity of literature that confirms the latter statement have an undeniable critical mass, but this volition could be stemming from and heading to the wrong direction. Finally, the challenges imposed by the physical nature of nanoparticles, as well as economic limitations caused by the high price of conventional nanoparticles such as gold (80$/g), diamond (35$/g), and silver (6$/g) that hinder their commercialization, are presented.

3.
Membranes (Basel) ; 13(7)2023 Jul 12.
Artículo en Inglés | MEDLINE | ID: mdl-37505028

RESUMEN

Perovskite membranes have gained considerable attention in gas separation and production due to their unique properties such as high selectivity and permeability towards various gases. These membranes are composed of perovskite oxides, which have a crystalline structure that can be tailored to enhance gas separation performance. In oxygen enrichment, perovskite membranes are employed to separate oxygen from air, which is then utilized in a variety of applications such as combustion and medical devices. Moreover, perovskite membranes are investigated for carbon capture applications to reduce greenhouse gas emissions. Further, perovskite membranes are employed in hydrogen production, where they aid in the separation of hydrogen from other gases such as methane and carbon dioxide. This process is essential in the production of clean hydrogen fuel for various applications such as fuel cells and transportation. This paper provides a review on the utilization and role of perovskite membranes in various gas applications, including oxygen enrichment, carbon capture, and hydrogen production.

4.
Sci Total Environ ; 879: 162569, 2023 Jun 25.
Artículo en Inglés | MEDLINE | ID: mdl-36871724

RESUMEN

Nanomaterials have gained huge attention with their wide range of applications. This is mainly driven by their unique properties. Nanomaterials include nanoparticles, nanotubes, nanofibers, and many other nanoscale structures have been widely assessed for improving the performance in different applications. However, with the wide implementation and utilization of nanomaterials, another challenge is being present when these materials end up in the environment, i.e. air, water, and soil. Environmental remediation of nanomaterials has recently gained attention and is concerned with removing nanomaterials from the environment. Membrane filtration processes have been widely considered a very efficient tool for the environmental remediation of different pollutants. Membranes with their different operating principles from size exclusions as in microfiltration, to ionic exclusion as in reverse osmosis, provide an effective tool for the removal of different types of nanomaterials. This work comprehends, summarizes, and critically discusses the different approaches for the environmental remediation of engineered nanomaterials using membrane filtration processes. Microfiltration (MF), ultrafiltration (UF), and nanofiltration (NF) have been shown to effectively remove nanomaterials from the air and aqueous environments. In MF, the adsorption of nanomaterials to membrane material was found to be the main removal mechanism. While in UF and NF, the main mechanism was size exclusion. Membrane fouling, hence requiring proper cleaning or replacement was found to be the major challenge for UF and NF processes. While limited adsorption capacity of nanomaterial along with desorption was found to be the main challenges for MF.

5.
Chemosphere ; 320: 137996, 2023 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-36754298

RESUMEN

The rapid growth in the consumption of fossil fuels resulted in climate change and severe health issues. Among the different proposed methods to control climate change, carbon capture technologies are the best choice in the current stage. In this study, the various membrane technologies used for carbon capture and their impact on achieving sustainable development goals (SDGs) are discussed. Membrane-based carbon capture processes in pre-combustion and post-combustion, which are known as membrane gas separation (MGS) and membrane contactor (MC), respectively, along with the process of fabrication and the different limitations that hinder their performances are discussed. Additionally, the 17 SDGs, where each representing a crucial topic in the current global task of a sustainable future, that are impacted by membrane-based carbon capture technologies are discussed. Membrane-based carbon capture technologies showed to have mixed impacts on different SDGs, varying in intensity and usefulness. It was found that the membrane-based carbon capture technologies had mostly influenced SDG 7 by enhancement in the zero-emission production, SDG 9 by providing 38-42% cost savings compared to liquid absorption, SDG 3 through reducing pollution and particulate matter emissions by 23%, and SDG 13, with SDG 13 being the most positively influenced by membrane-based carbon capture technologies, as they significantly reduce the CO2 emissions and have high CO2 capture yields (80-90%), thus supporting the objectives of SDG 13 in combatting climate change.


Asunto(s)
Carbono , Desarrollo Sostenible , Dióxido de Carbono/análisis , Salud Global , Combustibles Fósiles
6.
Sci Rep ; 12(1): 22066, 2022 Dec 21.
Artículo en Inglés | MEDLINE | ID: mdl-36543875

RESUMEN

This work presents findings on utilizing the expansion stage of compressed air energy storage systems for air conditioning purposes. The proposed setup is an ancillary installation to an existing compressed air energy storage setup and is used to produce chilled water at temperatures as low as 5 °C. An experimental setup for the ancillary system has been built with appropriate telemetric devices to measure the temporal temperature variation, which consequently can be used to calculate the heat transfer and available cooling capacity. The system is compared to commercially available compression cooling air conditioners, and the potential of replacing them is promising, as one ton of conventional cooling can be replaced with a 500-L (0.5 m3) air tank at 20 bar operating for an hour. More tanks can be added to extend the operational viability of the system, which is also serving the original purpose of storing energy from grid excess or from solar photovoltaic panels. The thermal management has had the added benefit of increasing the roundtrip efficiency of the storage system from 31.4 to 35.2%, along with handling a portion of the cooling load.

7.
Materials (Basel) ; 15(21)2022 Nov 04.
Artículo en Inglés | MEDLINE | ID: mdl-36363396

RESUMEN

Graphene is fundamentally a two-dimensional material with extraordinary optical, thermal, mechanical, and electrical characteristics. It has a versatile surface chemistry and large surface area. It is a carbon nanomaterial, which comprises sp2 hybridized carbon atoms placed in a hexagonal lattice with one-atom thickness, giving it a two-dimensional structure. A large number of synthesis techniques including epitaxial growth, liquid phase exfoliation, electrochemical exfoliation, mechanical exfoliation, and chemical vapor deposition are used for the synthesis of graphene. Graphene prepared using different techniques can have a number of benefits and deficiencies depending on its application. This study provides a summary of graphene preparation techniques and critically assesses the use of graphene, its derivates, and composites in environmental applications. These applications include the use of graphene as membrane material for the detoxication and purification of water, active material for gas sensing, heavy metal ions detection, and CO2 conversion. Furthermore, a trend analysis of both synthesis techniques and environmental applications of graphene has been performed by extracting and analyzing Scopus data from the past ten years. Finally, conclusions and outlook are provided to address the residual challenges related to the synthesis of the material and its use for environmental applications.

8.
Sci Total Environ ; 757: 143937, 2021 Feb 25.
Artículo en Inglés | MEDLINE | ID: mdl-33316513

RESUMEN

In this work, the technical feasibility of an all-air vehicle is investigated. A test rig has been built for this purpose in order to assess the proposed system experimentally. The operating pressures selected are deliberately low to mitigate the heat generated/dissipated during charging and discharging of the air cylinders driving an air motor, respectively. The experimental setup consists of three cylinders charged up to 5 bar and operated via solenoid valves to control the discharge of the cylinders via a programmable logic controller. The operating modes vary according to the expected load demand on the vehicle during startup and also during cruise. The three cylinders are discharged in tandem if the demand calls for high power density, then they are operated sequentially to augment the operational range of the vehicle. A simple sprocket-chain mechanism is used for its simplicity in this proof-of-concept stage to better understand the parameters pertinent to vehicle operation, which will later be replaced by a continuously variable transmission (CVT) gear. The results show a great potential for such mode of transport, especially for vast locales, such as a hospital, golf course or a university campus, with top velocities estimated to be around 14 km/h velocities and driven sprocket powers of 0.7 hp. Other combinations of drive gear ratio and cylinder discharge sequences result in a wide range of output power and maximum speed possibilities.

9.
Sci Total Environ ; 759: 143529, 2021 Mar 10.
Artículo en Inglés | MEDLINE | ID: mdl-33229076

RESUMEN

Carbon capture and sequestration technologies are used to reduce carbon emissions. Membranes, solvents, and adsorbents are the three major methods of CO2 capture. One of the promising methods is the use of algae to absorb CO2 from flue gases and convert it into biomass. Algae have great potential as renewable fuel sources and CO2 capture using photosynthesis for carbon fixation has also attracted much attention. This paper presents an extensive and in-depth report on the utilization of algae for carbon capture and accumulation. This is done in conjunction with cultivating the algae for the production of biomass for biodiesel production. Different systems are investigated for algae cultivation as well as carbon capture to effectively mitigate carbon emissions. The performance and productivity of these biosystems depend on various conditions including algae type, light sources, nutrients, pH, temperature, and mass transfer. Macroalgae and microalgae species were explored to determine their suitability for carbon capture and sequestration, along with the production of biodiesel. The steps for producing biodiesel were comprehensively reviewed, which are harvesting, dehydrating, oil extraction, oil refining, and transesterification. This technology combines active carbon capture with the potential of biodiesel production.


Asunto(s)
Biocombustibles , Microalgas , Biomasa , Dióxido de Carbono , Gases
10.
Nanomaterials (Basel) ; 10(4)2020 Apr 19.
Artículo en Inglés | MEDLINE | ID: mdl-32325901

RESUMEN

This work presents the synthesis and deposition of CuI and FeCu materials on copper substrates for dye-sensitized solar cell applications. FeCu is a metastable alloy of iron and copper powders and possesses good optical and intrinsic magnetic properties. Coupled with copper iodide as tandem layers, the deposition of these two materials was permutated over a pure copper substrate, characterized and then tested within a solar cell. The cell was sensitized with a natural dye extracted from a local desert plant (Calotropis Gigantea) and operated with an iodine/triiodide electrolyte. The results show that the best layer arrangement was Cu/FeCu/CuI, which gave an efficiency of around 0.763% (compared to 0.196% from reported cells in the literature using a natural sensitizer).

11.
Sci Total Environ ; 717: 137221, 2020 May 15.
Artículo en Inglés | MEDLINE | ID: mdl-32062241

RESUMEN

The efforts to curtail carbon dioxide presence in the atmosphere are a strong function of the available technologies to capture, store and usefully utilize it. Materials with adequate CO2 sorption kinetics that are both effective and economical are of prime importance for the whole capture system to be built around. This work identifies such materials that are currently used in CO2 adsorption beds/columns at different global locations, along with their vital operational parameters, logistics and costs. Three main classes of materials currently in use to that end are discussed in detail here, namely solid sorbents, advanced solvents membrane systems. These materials are then compared in terms of their potential CO2 uptake, operating parameters and ease of use and implementation of the respective technology. Tabular data are appended to each technology covered with the most relevant advantages and disadvantages. With such comprehensive survey of the recent state-of-the-art materials, recommendations are also made to facilitate the selection of systems based on their CO2 yield, price and suitability to the geographical location.

12.
Sci Total Environ ; 657: 56-72, 2019 Mar 20.
Artículo en Inglés | MEDLINE | ID: mdl-30530219

RESUMEN

The greenhouse gases emissions produced by industry and power plants are the cause of climate change. An effective approach for limiting the impact of such emissions is adopting modern Carbon Capture and Storage (CCS) technology that can capture more than 90% of carbon dioxide (CO2) generated from power plants. This paper presents an evaluation of state-of-the-art technologies used in the capturing CO2. The main capturing strategies including post-combustion, pre-combustion, and oxy - combustion are reviewed and compared. Various challenges associated with storing and transporting the CO2 from one location to the other are also presented. Furthermore, recent advancements of CCS technology are discussed to highlight the latest progress made by the research community in developing affordable carbon capture and storage systems. Finally, the future prospects and sustainability aspects of CCS technology as well as policies developed by different countries concerning such technology are presented.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...