Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Más filtros













Base de datos
Intervalo de año de publicación
1.
Int J Pharm X ; 6: 100211, 2023 Dec 15.
Artículo en Inglés | MEDLINE | ID: mdl-37736236

RESUMEN

Chrysin (CR) is a water-insoluble drug reported for different therapeutic effects. The microwave irradiation method was used in this study to create a multicomponent inclusion complex (CR-MC) containing CR (drug) and carrier hydroxyl propyl beta cyclodextrin (HP ß CD) and L-arginine (LA). The prepared inclusion complex (CR-MC) was evaluated for dissolution study and results were compared with chrysin physical mixture (CR-PM). Further, the samples were assessed for infra-red (IR), nuclear magnetic resonance (NMR), differential scanning calorimeter (DSC), scanning electron microscope (SEM) and molecular docking. Finally, the cell viability, reactive oxygen species and flow cytometer studies were also assessed to check the potential of the prepared inclusion complex on the human primary glioblastoma cell line (U87-MG cell). The phase solubility findings revealed a stability constant (773 mol L-1) as well as a complexation efficiency of 0.027. The dissolution study displayed a significant increase in CR release from CR-MC (99.03 ± 0.39%) > CR-PM (70.58 ± 1.16%) > pure CR (35.29 ± 1.55%). NMR and IR spectral data revealed no interaction between CR and carriers. SEM and DSC study results revealed the conversion into amorphous form. The molecular docking results illustrated a high docking score, which supports the findings of complex formation. The cell viability, reactive oxygen species, and flow cytometry studies results showed enhanced activity from CR-MC against the tested human primary glioblastoma cell line. From the results it has been observed that chrysin solubility significantly increased after complexation and there in vitro activity also enhanced against cancer cell line.

2.
Int J Mol Sci ; 22(21)2021 Oct 20.
Artículo en Inglés | MEDLINE | ID: mdl-34768742

RESUMEN

The incidences of traumatic brain injuries (TBIs) are increasing globally because of expanding population and increased dependencies on motorized vehicles and machines. This has resulted in increased socio-economic burden on the healthcare system, as TBIs are often associated with mental and physical morbidities with lifelong dependencies, and have severely limited therapeutic options. There is an emerging need to identify the molecular mechanisms orchestrating these injuries to life-long neurodegenerative disease and a therapeutic strategy to counter them. This review highlights the dynamics and role of choline-containing phospholipids during TBIs and how they can be used to evaluate the severity of injuries and later targeted to mitigate neuro-degradation, based on clinical and preclinical studies. Choline-based phospholipids are involved in maintaining the structural integrity of the neuronal/glial cell membranes and are simultaneously the essential component of various biochemical pathways, such as cholinergic neuronal transmission in the brain. Choline or its metabolite levels increase during acute and chronic phases of TBI because of excitotoxicity, ischemia and oxidative stress; this can serve as useful biomarker to predict the severity and prognosis of TBIs. Moreover, the effect of choline-replenishing agents as a post-TBI management strategy has been reviewed in clinical and preclinical studies. Overall, this review determines the theranostic potential of choline phospholipids and provides new insights in the management of TBI.


Asunto(s)
Lesiones Traumáticas del Encéfalo/metabolismo , Colina/metabolismo , Fosfolípidos/metabolismo , Encéfalo/fisiopatología , Lesiones Traumáticas del Encéfalo/complicaciones , Lesiones Traumáticas del Encéfalo/fisiopatología , Colina/fisiología , Comorbilidad/tendencias , Citidina Difosfato Colina/metabolismo , Humanos , Enfermedades Neurodegenerativas , Neuroglía/fisiología , Estrés Oxidativo/fisiología , Fosfatidilcolinas/metabolismo , Fosfolípidos/fisiología
3.
Biomed Res Int ; 2020: 3193725, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-33381547

RESUMEN

Traumatic brain injury (TBI) is among the most debilitating neurological disorders with inadequate therapeutic options. It affects all age groups globally leading to post-TBI behavioral challenges and life-long disabilities requiring interventions for these health issues. In the current study, C57BL/6J mice were induced with TBI through the weight-drop method, and outcomes of acutely administered ketamine alone and in combination with perampanel were observed. The impact of test drugs was evaluated for post-TBI behavioral changes by employing the open field test (OFT), Y-maze test, and novel object recognition test (NOR). After that, isolated plasma and brain homogenates were analyzed for inflammatory modulators, i.e., NF-κB and iNOS, through ELISA. Moreover, metabolomic studies were carried out to further authenticate the TBI rescuing potential of drugs. The animals treated with ketamine-perampanel combination demonstrated improved exploratory behavior in OFT (P < 0.05), while ketamine alone as well as in combination yielded anxiolytic effect (P < 0.05-0.001) in posttraumatic mice. Similarly, the % spontaneous alternation and % discrimination index were increased after the administration of ketamine alone (P < 0.05) and ketamine-perampanel combination (P < 0.01-0.001) in the Y-maze test and NOR test, respectively. ELISA demonstrated the reduced central and peripheral expression of NF-κB (P < 0.05) and iNOS (P < 0.01-0.0001) after ketamine-perampanel polypharmacy. The TBI-imparted alteration in plasma metabolites was restored by drug combination as evidenced by metabolomic studies. The outcomes were fruitful with ketamine, but the combination therapy proved more significant in improving all studied parameters. The benefits of this new investigated polypharmacy might be due to their antiglutamatergic, antioxidant, and neuroprotective capacity.


Asunto(s)
Conducta Animal/efectos de los fármacos , Lesiones Traumáticas del Encéfalo/tratamiento farmacológico , Inflamación/tratamiento farmacológico , Ketamina/administración & dosificación , Piridonas/administración & dosificación , Animales , Encéfalo/efectos de los fármacos , Modelos Animales de Enfermedad , Masculino , Aprendizaje por Laberinto , Metabolómica , Ratones , Ratones Endogámicos C57BL , Subunidad p50 de NF-kappa B/metabolismo , Neuroprotección , Fármacos Neuroprotectores/farmacología , Óxido Nítrico Sintasa de Tipo II/metabolismo , Nitrilos , Reconocimiento en Psicología/efectos de los fármacos , Memoria Espacial/efectos de los fármacos
4.
Saudi Pharm J ; 28(8): 951-962, 2020 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-32792840

RESUMEN

In 30% of epileptic individuals, intractable epilepsy represents a problem for the management of seizures and severely affects the patient's quality of life due to pharmacoresistance with commonly used antiseizure drugs (ASDs). Surgery is not the best option for all resistant patients due to its post-surgical consequences. Therefore, several alternative or complementary therapies have scientifically proven significant therapeutic potential for the management of seizures in intractable epilepsy patients with seizure-free occurrences. Various non-pharmacological interventions include metabolic therapy, brain stimulation therapy, and complementary therapy. Metabolic therapy works out by altering the energy metabolites and include the ketogenic diets (KD) (that is restricted in carbohydrates and mimics the metabolic state of the body as produced during fasting and exerts its antiepileptic effect) and anaplerotic diet (which revives the level of TCA cycle intermediates and this is responsible for its effect). Neuromodulation therapy includes vagus nerve stimulation (VNS), responsive neurostimulation therapy (RNS) and transcranial magnetic stimulation therapy (TMS). Complementary therapies such as biofeedback and music therapy have demonstrated promising results in pharmacoresistant epilepsies. The current emphasis of the review article is to explore the different integrated mechanisms of various treatments for adequate seizure control, and their limitations, and supportive pieces of evidence that show the efficacy and tolerability of these non-pharmacological options.

5.
Drug Metab Dispos ; 48(7): 570-579, 2020 07.
Artículo en Inglés | MEDLINE | ID: mdl-32393652

RESUMEN

Theophylline is commonly used for the treatment of asthma and has a low hepatic clearance. The changes in plasma albumin concentration occurring in asthma may affect the exposure of theophylline. The aim of the presented work was to predict theophylline pharmacokinetics (PK) after incorporating the changes in plasma albumin concentration occurring in patients with asthma into a physiologically based pharmacokinetic (PBPK) model to see whether these changes can affect the systemic theophylline concentrations in asthma. The PBPK model was developed following a systematic model building approach using Simcyp. The predictions were performed initially in healthy adults after intravenous and oral drug administration. Only when the developed adult PBPK model had adequately predicted theophylline PK in healthy adults, the changes in plasma albumin concentrations were incorporated into the model for predicting drug exposure in patients with asthma. After evaluation of the developed model in the adult population, it was scaled to children on physiologic basis. The model evaluation was performed by using visual predictive checks and comparison of ratio of observed and predicted (Robs/Pre) PK parameters along with their 2-fold error range. The developed PBPK model has effectively described theophylline PK in both healthy and diseased populations, as Robs/Pre for all the PK parameters were within the 2-fold error limit. The predictions in patients with asthma showed that there were no significant changes in PK parameters after incorporating the changes in serum albumin concentration. The mechanistic nature of the developed asthma-PBPK model can facilitate its extension to other drugs. SIGNIFICANCE STATEMENT: Exposure of a low hepatic clearance drug like theophylline may be susceptible to plasma albumin concentration changes that occur in asthma. These changes in systemic albumin concentrations can be incorporated into a physiologically based pharmacokinetic model to predict theophylline pharmacokinetics in adult and pediatric asthma populations. The presented work is focused on predicting theophylline absorption, distribution, metabolism, and elimination in adult and pediatric asthma populations after incorporating reported changes in serum albumin concentrations to see their impact on the systemic theophylline concentrations.


Asunto(s)
Asma/tratamiento farmacológico , Cálculo de Dosificación de Drogas , Albúmina Sérica Humana/análisis , Teofilina/farmacocinética , Administración Intravenosa , Administración Oral , Adulto , Factores de Edad , Área Bajo la Curva , Asma/sangre , Niño , Preescolar , Simulación por Computador , Conjuntos de Datos como Asunto , Relación Dosis-Respuesta a Droga , Femenino , Voluntarios Sanos , Eliminación Hepatobiliar , Humanos , Lactante , Masculino , Modelos Biológicos , Teofilina/administración & dosificación , Distribución Tisular
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA