Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
Appl Radiat Isot ; 204: 111148, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-38128301

RESUMEN

In this work, both undoped and Thulium (Tm3+) doped (0.3-10 mol%) magnesium pyrophosphate (Mg2P2O7) powders were synthesized by the solvent evaporation method to study their photo-and thermoluminescent properties. Two crystalline phases were observed in the powders by X-Ray diffraction (XRD), the main phase being Mg2P2O7 and the second one thulium phosphate (TmPO4). The superficial morphology was analyzed by scanning electron microscopy (SEM), which revealed that the powders are agglomerates with an undefined form and grains with non-uniform size distribution. The photoluminescence (PL) emission spectra of Tm3+ doped powders show the 1D2 → 3F4 transition, associated with Tm3+ ions, at 452 and 458 nm. The thermoluminescence (TL) properties were analyzed in the undoped and Tm3+ doped powders exposed to 90Sr beta source. The TL glow curve of Tm3+ doped powders exhibits three maxima at about ⁓64-66 °C, ⁓198-202 °C, and ⁓301 °C. The TL dose-response is sub-linear from 0.11 to 0.54 Gy, linear between 0.79 and 24.95 Gy, and supra-linear from 34.99 to 599.95 Gy. Acceptable repeatability with a coefficient of variation of ∼1% was obtained after ten cycles of irradiation and readout. At 63 d of storage, the powders show fading of 30%, and at 1.6 years (585 d), the integrated TL intensity decays by 47%. The kinetic parameters of activation energy and frequency factor were evaluated using the Initial Rise, Booth, Bohun, and Porfianovitch (BBP) and Hoogenstraaten methods and Glow Curve Deconvolution with a general order kinetic model.

2.
Nanoscale ; 14(36): 13214-13226, 2022 Sep 22.
Artículo en Inglés | MEDLINE | ID: mdl-36047914

RESUMEN

CsPbI3 perovskite nanocrystals (NCs) are promising building blocks for photovoltaics and optoelectronics. However, they exhibit an essential drawback in the form of phase stability: α-phase, with a ∼1.80 eV bandgap, can easily experience a phase transition to a non-radiative orthorhombic δ-phase in an ambient environment. This leads to the need to carry out the CsPbI3-based device fabrication in an inert atmosphere, which is technologically inconvenient and expensive. One of the most successful approaches proposed to overcome this problem is synthesizing mixed halide CsPbBr3-xIx NCs to improve the stability of the α-phase perovskite structure. However, the formation of high-quality thin films of CsPbBr3-xIx NCs with high PLQY is challenging owing to the degradation of their optical properties after deposition on a substrate. This work presents spray coating to carry out a solid-state anion exchange in CsPbBr3 NCs thin films at ambient conditions with low-demanding reaction conditions. This constitutes a novel open-air and annealing-free technology to manufacture CsPbBr3-xIx NC thin films with high optical quality and record high photoluminescence quantum yields (PLQY) based on spray-driven halide (Br- to I-) anion exchange in a solid-state phase. Besides, tunable emission wavelengths between 520 and 670 nm can be obtained from CsPbBr3-xIx NC films using accurate tuning volumes of HI solution sprayed over the initial surface of CsPbBr3 film to provide the halide exchange. The optical quality of the halide-exchanged PNCs films remains practically identical to that of initial Br-containing layers, with a remarkable PLQY enhancement after anion exchange, from ∼61% for CsPbBr3 thin films emitting at 520 nm to ∼84% for mixed halide CsPbBr3-xIx film emitting at 640 nm. The huge potential of the system is confirmed by demonstrating a low-threshold amplified spontaneous emission.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...