Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros













Base de datos
Intervalo de año de publicación
1.
Cell Mol Biol (Noisy-le-grand) ; 70(2): 24-29, 2024 02 29.
Artículo en Inglés | MEDLINE | ID: mdl-38430045

RESUMEN

The genetics of organisms play a vital role in the development of coronary artery disease (CAD), with its heritability estimated at approximately 50-60%. For this purpose, we examined the relationship between CAD risk and C12orf43/rs2258287 polymorphisms in the Pakistani population. In this study based on the genetic approach to dyslipidemia, a total of 200 subjects were included from the southern Punjab. The biochemical analysis of parameters (total cholesterol, triglycerides, blood glucose, high-density lipoprotein, and low-density lipoprotein) was carried out along with molecular analysis using an ARMS-PCR-based assay for single-nucleotide polymorphism (SNP) C12orf43/rs2258287 to identify the genotype. Genotypes showed a substantial correlation with both family history and metabolic markers. The cholesterol, low-density lipoprotein cholesterol (LDL-C), triglycerides and blood glucose levels were higher while the high-density lipoprotein cholesterol (HDL-C) level was lower significantly (p<0.05) in cases than in controls. Age, pulse rate, diabetes, physical activity, smoking, family history, and dietary habits were also significantly associated (p<0.05) with CAD individuals. The SNP C12orf43/rs2258287 also showed an association with CAD in the population of southern Punjab. Based upon this study, it could be concluded that CAD is characterized by an unfavorable lipid profile in association with SNP C12orf43/rs2258287.


Asunto(s)
Enfermedad de la Arteria Coronaria , Proteínas , Humanos , Glucemia , Colesterol , LDL-Colesterol , Enfermedad de la Arteria Coronaria/genética , Predisposición Genética a la Enfermedad , Lipoproteínas HDL , Polimorfismo de Nucleótido Simple/genética , Factores de Riesgo , Triglicéridos , Proteínas/genética
3.
World J Microbiol Biotechnol ; 39(12): 345, 2023 Oct 16.
Artículo en Inglés | MEDLINE | ID: mdl-37843704

RESUMEN

Macroalgae has the potential to be a precious resource in food, pharmaceutical, and nutraceutical industries. Therefore, the present study was carried out to identify and quantify the phyco-chemicals and to assess the nutritional profile, antimicrobial, antioxidant, and anti-diabetic properties of Nitella hyalina extracts. Nutritional composition revealed0.05 ± 2.40% ash content, followed by crude protein (24.66 ± 0.95%), crude fat (17.66 ± 1.42%), crude fiber (2.17 ± 0.91%), moisture content (15.46 ± 0.48%) and calculated energy value (173.50 ± 2.90 Kcal/100 g). 23 compounds were identified through GC-MS analysis in ethyl acetate extract, with primary compounds being Palmitic acid, methyl ester, (Z)-9-Hexadecenoic acid, methyl ester, and Methyl tetra decanoate. Whereas 15 compounds were identified in n-butanol extract, with the major compounds being Tetra decanoic acid, 9-hexadecanoic acid, Methyl pentopyranoside, and undecane. FT-IR spectroscopy confirmed the presence of alcoholic phenol, saturated aliphatic compounds, lipids, carboxylic acid, carbonyl, aromatic components, amine, alkyl halides, alkene, and halogen compounds. Moreover, n-butanol contains 1.663 ± 0.768 mg GAE/g, of total phenolic contents (TPC,) and 2.050 ± 0.143 QE/g of total flavonoid contents (TFC), followed by ethyl acetate extract, i.e. 1.043 ± 0.961 mg GAE/g and 1.730 ± 0.311 mg QE/g respectively. Anti-radical scavenging effect in a range of 34.55-46.35% and 35.39-41.79% was measured for n-butanol and ethyl acetate extracts, respectively. Antimicrobial results declared that n-butanol extract had the highest growth inhibitory effect, followed by ethyl acetate extract. Pseudomonas aeruginosa was reported to be the most susceptible strain, followed by Staphylococcus aureus and Escherichia coli, while Candida albicans showed the least inhibition at all concentrations. In-vivo hypoglycemic study revealed that both extracts exhibited dose-dependent activity. Significant hypoglycemic activity was observed at a dose of 300 mg/kg- 1 after 6 h i.e. 241.50 ± 2.88, followed by doses of 200 and 100 mg/kg- 1 (245.17 ± 3.43 and 250.67 ± 7.45, respectively) for n-butanol extract. In conclusion, the macroalgae demonstrated potency concerning antioxidant, antimicrobial, and hypoglycemic properties.


Asunto(s)
Antiinfecciosos , Nitella , Antioxidantes/química , Extractos Vegetales/farmacología , Extractos Vegetales/química , Hipoglucemiantes/farmacología , Espectroscopía Infrarroja por Transformada de Fourier , 1-Butanol , Antiinfecciosos/farmacología , Antiinfecciosos/química , Ésteres
4.
BMC Chem ; 17(1): 128, 2023 Sep 28.
Artículo en Inglés | MEDLINE | ID: mdl-37770921

RESUMEN

In this study, a polar extract of Aconitum lycoctonum L. was used for the synthesis of silver nanoparticles (AgNPs), followed by their characterization using different techniques and evaluation of their potential as antioxidants, amylase inhibitors, anti-inflammatory and antibacterial agents. The formation of AgNPs was detected by a color change, from transparent to dark brown, within 15 min and a surface resonance peak at 460 nm in the UV-visible spectrum. The FTIR spectra confirmed the involvement of various biomolecules in the synthesis of AgNPs. The average diameter of these spherical AgNPs was 67 nm, as shown by the scanning electron micrograph. The inhibition zones showed that the synthesized nanoparticles inhibited the growth of Gram-positive and negative bacteria. FRAP and DPPH assays were used to demonstrate the antioxidant potential of AgNPs. The highest value of FRAP (50.47% AAE/mL) was detected at a concentration of 90 ppm and a DPPH scavenging activity of 69.63% GAE was detected at a concentration of 20 µg/mL of the synthesized AgNPs. 500 µg/mL of the synthesized AgNPs were quite efficient in causing 91.78% denaturation of ovalbumin. The AgNPs mediated by A. lycoctonum also showed an inhibitory effect on α-amylase. Therefore, AgNPs synthesized from A. lycoctonum may serve as potential candidates for antibacterial, antioxidant, anti-inflammatory, and antidiabetic agents.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA